|
Pure Mathematics 2023
具有记忆项的对数 Boussinesq型方程解的长时间行为研究
|
Abstract:
本文考虑一类具有记忆项的对数梁方程的初边值问题。利用 Galerkin 方法结合对数 Sobolev 不等式及对数 Gronwall 不等式,我们证明了解的全局存在性。在此基础上,我们借助位势井思想进一步得到了系统在适当初值条件下的指数烹减及指数增长。
This paper is concerned with the initial value problem of a logarithmic beam equations
with memory. Using Galerkin method, logarithmic Sobolev inequality and the
Gronwall inequality, we obtain the global existence of the solutions. Moreover, we prove the exponential decay and exponential growth of the system by using potential
well theory.
[1] | Boussinesq, J. (1872) Théorie des ondes et des remous qui se propagent le long d’un canalrectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitessessensiblement pareilles de la surface au fond. Journal de Mathématiques Pures et Appliquées, 17,
55-108. |
[2] | Zakharov, V. (1973) On Stochastization of One-Dimensional Chains of Nonlinear Oscillators.
Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 65, 219-225. |
[3] | Liu, Y. (1995) Instability and Blow-Up of Solutions to a Generalized Boussinesq Equation.
SIAM Journal on Mathematical Analysis, 26, 1527-1546.
https://doi.org/10.1137/S0036141093258094 |
[4] | Wang, Y. and Mu, C. (2007) Global Existence and Blow-Up of the Solutions for the Multidimensional
Generalized Boussinesq Equation. Mathematical Methods in the Applied Sciences,
30, 1403-1417. https://doi.org/10.1002/mma.846 |
[5] | Górka, P. (2009) Logarithmic Klein-Gordon Equation. Acta Physica Polonica B, 40, 59-66. |
[6] | Wazwaz, A. (2015) Gaussian Solitary Waves for the Logarithmic Boussinesq Equation and the
Logarithmic Regularized Boussinesq Equation. Ocean Engineering, 94, 111-115.
https://doi.org/10.1016/j.oceaneng.2014.11.024 |
[7] | Hu, Q., Zhang, H. and Liu, G. (2016) Global Existence and Exponential Growth of Solution
for the Logarithmic Boussinesq-Type Equation. Journal of Mathematical Analysis and
Applications, 436, 990-1001. https://doi.org/10.1016/j.jmaa.2015.11.082 |
[8] | Hu, Q. and Zhang, H. (2017) Initial Boundary Value Problem for Generalized Logarithmic
Improved Boussinesq Equation. Mathematical Methods in the Applied Sciences, 40, 3687-3697.
https://doi.org/10.1002/mma.4255 |
[9] | Renardy, M., Hrusa, W.J. and Nohel, J.A. (1987) Mathematical Problems in Viscoelasticity.
American Mathematical Society, New York. |
[10] | Cavalcanti, M.M., et al. (2017) Exponential Stability for the Wave Equation with Degenerate
Nonlocal Weak Damping. Israel Journal of Mathematics, 219, 189-213.
https://doi.org/10.1007/s11856-017-1478-y |
[11] | Park, J. and Kim, J. (2004) Existence and Uniform Decay for Euler-Bernoulli Beam Equation
with Memory Term. Mathematical Methods in the Applied Sciences, 27, 1629-1640.
https://doi.org/10.1002/mma.512 |
[12] | Narciso, V. (2015) Long-Time Behavior of a Nonlinear Viscoelastic Beam Equation with Past
History. Mathematical Methods in the Applied Sciences, 38, 775-784.
https://doi.org/10.1002/mma.3109 |
[13] | Peyravi, A. (2020) General Stability and Exponential Growth for a Class of Semi-Linear Wave
Equations with Logarithmic Source and Memory Terms. Applied Mathematics Optimization,
81, 545-561. https://doi.org/10.1007/s00245-018-9508-7 |
[14] | 吴晓霞,马巧珍.带有线性记忆的波方程在 Rn上的时间依赖吸引子 [J].应用数学,2021,34(1)73-85. |
[15] | 代辉亚,张宏伟.一类具记忆项的非线性强阻尼双曲方程解的爆破性 [J].数学的实践与认识2014,44(18): 266-270. |
[16] | Evans, L. (2003) Entropy and Partial Differential Equations. Library of Congress Catalogingin-
Publication. |