全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类具有低正则初值的趋化–流体耦合模型解的整体存在性
Global Existence of Solutions for a Chemotaxis-Fluid Coupling Model with Low Regular Initial Data

DOI: 10.12677/PM.2023.1311341, PP. 3272-3285

Keywords: 趋化–流体耦合模型,Logistic源,弱解
Chemotaxis-Fluid Coupling Model
, Logistic Source, Weak Solution

Full-Text   Cite this paper   Add to My Lib

Abstract:

考虑在三维有界区域上带有logistic源的具有信号消耗机制的趋化–流体耦合方程组:\"\"的初边值问题,其中Ω??3是一个具有光滑边界的有界区域;n和c满足齐次Neumann边界条件,u满足Dirichlet边界条件;Φ∈W2,∞(Ω);r>0,μ>0,α>1是给定的参数。此前的结果表明:当初值满足n0∈C0(Ω)时,该模型在三维有界凸区域上存在整体弱解。本文进一步研究了当初值条件正则性更低时,该模型弱解的整体存在性。具体而言,初值n0满足n0∈L1(Ω),该模型在三维有界凸区域上存在整体弱解。
This paper mainly studies the initial-boundary value problem of chemotaxis-fluid coupling equations \"\"with signal consumption mechanism on a three-dimensional bounded domain with logistic source where Ω??3 is bounded domain with smooth boundary; n and c satisfy the homogeneous Neu-mann boundary condition and u satisfy the Dirichlet boundary condition; where Φ∈W2,∞(Ω); where r>0, μ>0, and α>1 are given parameters. Previous results show that the initial value satisfies n0∈C0(Ω), the model has a globally weak solution on the three-dimensional bounded convex region. This paper further examines when the initial value condition regularity is lower, the globally existence of weak solutions in this model. Specifically, the initial value n0 satisfies n0∈L1(Ω), the model has a global weak solution on a three-dimensional bounded convex region.

References

[1]  Keller, E. and Segel, L. (1970) Initiation of Slime Mold Aggregation Viewed as an Instability. Journal of Theoretical Biology, 26, 399-417.
https://doi.org/10.1016/0022-5193(70)90092-5
[2]  王玉兰. 趋化-流体耦合模型研究进展[J]. 西华大学学报(自然科学版), 2016, 35(4): 30-38.
[3]  Bellomo, N., Bellouquid, A., Tao, Y.S., et al. (2005) Toward a Mathematical Theory of Keller-Segel Models of Pattern Formation in Biological Tissues. Mathematical Models in Application Sciences, 25, 1663-1763.
https://doi.org/10.1142/S021820251550044X
[4]  Biler, P. (1998) Local and Global Solvability of Some Parabolic Systems Modelling Chemotaxis. Advances in Mathematical Sciences and Application, 8, 715-743.
[5]  Herrero, M.A. and Velazquez, J.J.L. (1997) A Blow-Up Mechanism for Chemotaxis Model. Annali Della Scuola Normale Superiore Di Pisa Classe Di Scienze, 24, 633-683.
[6]  Horstmann, D. and Wang, G. (2015) Blow-Up in a Chemotaxis Model without Symmetry Assumptions. European Journal of Applied Mathematics, 12, 159-177.
https://doi.org/10.1017/S0956792501004363
[7]  Lankeit, J. (2005) Eventual Smoothness and Asymptotics in a Three-Dimensional Chemotaxis System with Logistic Source. Journal of Differential Equations, 258, 1158-1191.
https://doi.org/10.1016/j.jde.2014.10.016
[8]  Osaki, K. and Yagi, A. (2001) Finite Dimensional Attractor for One-Dimensional Keller-Segel Equations. Funkcialaj Ekvacioj, 44, 441-469.
[9]  Nagai, T., Senba, T. and Yoshida, K. (1997) Application of the Trudinger-Moser Inequality to a Parabolic System of Chemotaxis. Funkcialaj Ekvacioj, 40, 411-433.
[10]  Winkler, M. (2013) Finite-Time Blow-Up in the Higher-Dimensional Parabolic-Parabolic Keller-Segel System. Journal de Mathématiques Pures et Appliquées, 100, 748-767.
https://doi.org/10.1016/j.matpur.2013.01.020
[11]  Vorotnikov, D. (2014) Weak Solutions for a Bioconvection Model Related to Bacillus subtillis. Communications in Mathematical Sciences, 12, 545-563.
https://doi.org/10.4310/CMS.2014.v12.n3.a8
[12]  Lankeit, J. (2016) Long-Term Behavior in a Chemotaxis-Fluid System with Logistic Source. Mathematical Models and Methods in Applied Sciences, 26, 2071-2109.
https://doi.org/10.1142/S021820251640008X
[13]  Wang, Y.L. (2020) Global Solvability and Eventual Smoothness in a Chemotaxis-Fluid System with Weak Logistic-Type Degradation. Mathematical Models and Methods in Applied Sciences, 6, 1217-1252.
https://doi.org/10.1142/S0218202520400102
[14]  Giga, Y. (1986) Solution for Semilinear Parabolic Equations in Lp and Regularity of Weak Solutions of the Navier-Stokes System. Journal of Differential Equations, 61, 186-212.
https://doi.org/10.1016/0022-0396(86)90096-3
[15]  Henry, D. (1981) Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, Vol. 840.
https://doi.org/10.1007/BFb0089647
[16]  Zhang, Q. and Li, Y. (2015) Global Weak Solutions for the Three-Dimensional Chemotaxis Navier-Stokes System with Nonlinear Diffusion. Journal of Differential Equations, 259, 3730-3754.
https://doi.org/10.1016/j.jde.2015.05.012

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133