|
Pure Mathematics 2023
测量误差模型方差多变点的估计及收敛速度
|
Abstract:
当已知测量误差模型中误差的方差存在变点时,对方差变点用特征函数构造了一个含有调节参数的“CUSUM型估计量”,研究了方差变点估计量的弱(强)相合性以及收敛速度,并结合“二元分割法”推广至多个方差变点的估计。利用基于数据驱动的调节参数选取方法选取适合的调节参数,并应用含有调节参数的“CUSUM型估计量”对黄金价格的涨跌幅的方差进行实证分析,结果表明基于调节参数“CUSUM型估计量”得到的方差变点与实际相符,且估计量更稳健。
When the variance of the measurement error model is known to have change points, a “CUSUM type estimator” with tuning parameters is constructed by using a characteristic function for each change point. The weak (strong) consistency and convergence rate of the variance change point estimation are studied, and the “binary segmentation method” is extended to estimate multiple variance change points. The data-driven tuning parameter selection method is used to select suitable tuning parameters, and using the “CUSUM type estimate” with tuning parameters to make an empirical analysis of the variance of the rise and fall of gold prices. The results show that the variance change points obtained based on the tuning parameter “CUSUM type estimator” are consistent with the reality, and the estimators are more robust.
[1] | Fuller, W.A. (1987) Measurement Error Models. John Wiley and Sons, New York.
https://doi.org/10.1002/9780470316665 |
[2] | Cheng, C.L. and Van Ness, J.W. (1999) Statistical Regression with Measurement Error: Kendall’s Library of Statistics 6. Wiley, Arnold, London. |
[3] | Carroll, R.J., Ruppert, D., Stefanski, L.A. and Crainiceanu, C.M. (2006) Measurement Error in Nonlinear Models: A Modern Perspective. 2nd Edition, Chapman and Hall/CRC, New York. https://doi.org/10.1201/9781420010138 |
[4] | Chang, Y.P. and Huang, W.T. (1997) Inferences for the Linear Errors-in-Variables with Change-Point Models. Journal of the American Statistical Association, 92, 171-178. https://doi.org/10.1080/01621459.1997.10473614 |
[5] | 王黎明. 测量误差模型只有一个变点的检验和估计[J]. 应用概率统计, 2002(18): 385-392. |
[6] | You, J., Zhou, Y. and Chen, G. (2006) Corrected Local Polynomial Estimation in Varying-Coefficient Models with Measurement Errors. Canadian Journal of Statistics, 34, 391-410. https://doi.org/10.1002/cjs.5550340303 |
[7] | Dong, C., Miao, B., Tan, C., Wei, D. and Wu, Y. (2013) An Estimate of a Change Point in Variance of Measurement Errors and Its Convergence Rate. Communications in Statistics-Theory and Methods, 44, 790-797.
https://doi.org/10.1080/03610926.2012.762395 |
[8] | Dong, C., Tan, C., Jin, B. and Miao, B. (2016) Inference on the Change Point Estimator of Variance in Measurement Error Models. Lithuanian Mathematical Journal, 56, 474-491. https://doi.org/10.1007/s10986-016-9330-3 |
[9] | Page, E.S. (1954) Continuous Inspection Schemes. Biometrika, 41, 100-115. https://doi.org/10.1093/biomet/41.1-2.100 |
[10] | Horváth, L. and Kokoszka, P. (1997) The Effect of Long-Range Dependence on Change-Point Estimators. Journal of Statistical Planning and Inference, 64, 51-81. https://doi.org/10.1016/S0378-3758(96)00208-X |
[11] | Fremdt, S. (2014) Asymptotic Distribution of the Delay Time in Page’s Sequential Procedure. Journal of Statistical Planning & Inference, 145, 74-9. https://doi.org/10.1016/j.jspi.2013.09.001 |
[12] | 谭常春, 江敏. CUSUM型统计量中调节参数对变点估计效果的影响分析[J]. 中国科学技术大学学报, 2020, 50(7): 920-928. |
[13] | Hoeffding, W. (1963) Probability Inequalities for Sums of Bounded Random Variables. Journal of the American Statistical Association, 58, 13-30. https://doi.org/10.1080/01621459.1963.10500830 |
[14] | Sen, A. and Srivastava, M.S. (1975) On Tests for Detecting Change in Mean. The Annals of Statistics, 3, 98-108.
https://doi.org/10.1214/aos/1176343001 |
[15] | Bai, J.S. (1997) Estimating Multiple Breaks One at a Time. Working Papers, 13, 315-352.
https://doi.org/10.1017/S0266466600005831 |