全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

可调谐外腔半导体激光器研究进展
Research Progress of Tunable External Cavity Semiconductor Laser

DOI: 10.12677/APP.2023.1311051, PP. 485-499

Keywords: TECDL,Littrow,Littman,衍射光栅,波导
TECDL
, Littrow, Littman, Diffraction Grating, Waveguide

Full-Text   Cite this paper   Add to My Lib

Abstract:

可调谐外腔半导体激光器具有调谐范围宽、线宽窄、输出功率高、单模输出等优良特性,在白光干涉测量技术、波分复用系统、相干光通信、光纤传感等领域有着广泛的应用。本文首先介绍了可调谐外腔半导体激光器的基本原理, 对衍射光栅结构、光纤布拉格光栅结构、波导结构三种主要的TECDL结构进行了详细的综述和比较。阐述了各种可调谐外腔半导体激光器的国内外发展状况,分析了不同外腔结构的优缺点,最后总结可调谐外腔半导体激光器的不足,展望了可调谐外腔半导体激光器的发展前景。
Tunable external cavity semiconductor lasers have excellent characteristics such as wide tuning range, narrow linewidth, high output power, single mode output, etc., which have a wide range of applications in the fields of white light interferometry, wavelength-division multiplexing sys-tems, coherent optical communication, fiber optic sensing and so on. This paper first introduces the basic principle of tunable external cavity semiconductor laser and three main structures of TECDLs are reviewed and compared in detail, such as diffraction grating structure, fiber Bragg grating structure, and waveguide structure. Then describes the domestic and international development status of various tunable external cavity semiconductor lasers, analyzes the advantages and disadvantages of the different external cavity structures, and finally summarizes the shortcomings of tunable external cavity semiconductor lasers, and looks forward to the prospect of tunable external cavity semiconductor lasers development.

References

[1]  Cheng, Q.X., Bahadori, M., Glick, M., Rumley, S. and Bergman, K. (2018) Recent Advances in Optical Technologies for Data Centers: A Review. Optica, 5, 1354-1370.
https://doi.org/10.1364/OPTICA.5.001354
[2]  Yang, Q.F., Shen, B., Wang, H., et al. (2019) Vernier Spectrometer Using Counterpropagating Soliton Microcombs. Science, 363, 965-968.
https://doi.org/10.1126/science.aaw2317
[3]  Sato, T., Yamaoto, F., Tsuji, K. and Horiguchi, T. (2002) An Uncooled External Cavity Diode Laser for Coarse-WDM Access Network Systems. IEEE Photonics Technology Letters, 14, 1001-1003.
https://doi.org/10.1109/LPT.2002.1012412
[4]  Sugiyama, T. and Ueda, T. (2006) In-situ Measurement for Gas Concentrations using Tunable Lasers. IEEJ Transactions on Sensors and Micromachines, 126, 464-468.
https://doi.org/10.1541/ieejsmas.126.464
[5]  Wu, W.R., Chen, M., Zhang, Z., et al. (2018) Overview of Deep Space Laser Communication. Science China Information Sciences, 61, 040301:1-040301:12. http://scis.scichina.com/en/2018/040301.pdf
[6]  Grafen, M., Delbeck, S., Busch, H., et al. (2018) Evaluation and Benchmarking of an EC-QCL-Based Mid-Infrared Spectrometer for Monitoring Metabolic Blood Parameters in Critical Care Units. Proceedings of Optical Diagnostics and Sensing XVIII: Toward Point-of-Care Diagnostics, San Francisco, 20 February 2018, 42-51.
https://doi.org/10.1117/12.2289625
[7]  Newman, Z.L., Maurice, V., Drake, T., et al. (2019) Architecture for the Photonic Integration of an Optical Atomic Clock. Optica, 6, 680-685.
https://doi.org/10.1364/OPTICA.6.000680
[8]  Sun, Y.G., Wei, F., Chen, D.J., et al. (2011) Design of a Mode-Hop-Free Tunable External Cavity Diode Laser with a PLZT Electro-Optic Ceramic Deflector. Proceedings of the SPIE, 8192, Article ID: 81923I.
https://doi.org/10.1117/12.900966
[9]  Britzger, M., Khalaidovski, A., Hemb, B., et al. (2012) Exter-nal-Cavity Diode Laser in Second-Order Littrow Configuration. Optics Letters, 37, 3117-3119.
https://doi.org/10.1364/OL.37.003117
[10]  Cai, H., Tao, J.F., Gu, Y.D., Kwong, D.L. and Liu, A.Q. (2013) Demonstration of a Single-Chip Integrated MEMS Tunable Laser with a Large Wavelength Tuning Range. 2013 IEEE International Electron Devices Meeting, Washington DC, 9-11 December 2013.
https://doi.org/10.1109/IEDM.2013.6724656
[11]  李斌, 涂嫔, 徐勇跃, 李哲, 余安澜, 王新兵, 左都罗. 405nm波段光栅外腔窄线宽蓝紫光半导体激光器[J]. 激光与光电子学进展, 2015, 52(3): 193-198.
[12]  高志强, 黄彦, 张宇露, 等. 宽调谐外腔式1.53 μm近红外半导体激光器研究[J]. 遥测遥控, 2017, 38(5): 55-61.
[13]  Guo, H. and Olamax, G.T. (2018) Analysis of No Mode-Hop Tuning of Mirror-Grating External-Cavity Diode Laser. Optics Communications, 421, 90-93.
https://doi.org/10.1016/j.optcom.2018.03.074
[14]  Podoskin, A., Golovin, V., Gavrina, P., Veselov, D., Zolotarev, V., Shamakhov, V., Nikolaev, D., Leshko, A., Slipchenko, S., Pikhtin, N. and Kopév, P. (2019) Ultrabroad Tuning Range (100? nm) of External-Cavity Continuous-Wave High-Power Semiconductor Lasers Based on a Single InGaAs Quantum Well. Applied Optics, 58, 9089-9093.
https://doi.org/10.1364/AO.58.009089
[15]  刘野, 刘宇, 肖辉东, 李洪玲, 曲大鹏, 郑权. 638 nm光栅外腔窄线宽半导体激光器[J]. 中国光学, 2020, 13(6): 1249-1256.
[16]  Wang, Y., Luo, S., Ji, H.M., Qu, D. and Huang, Y.D. (2021) Continuous-Wave Operation of InAs/InP Quantum Dot Tunable External-Cavity Laser Grown by Metal-Organic Chemical Vapor Deposition. Chinese Physics B, 30, 018106-1-018106-4.
https://doi.org/10.1088/1674-1056/abcfa4
[17]  苏鹏, 高欣, 张悦, 赵仁泽, 伏丁阳, 薄报学. 970 nm高功率光栅外腔可调谐半导体激光器[J]. 发光学报, 2023, 44(4): 664-672.
[18]  Chen, D., Fang, Z., Cai, H. and Qu, R.H. (2009) Polarization Characteristics of an External Cavity Diode Laser with Littman—Metcalf Configuration. IEEE Photonics Technology Letters, 21, 984-986.
https://doi.org/10.1109/LPT.2009.2021481
[19]  Zhang, D., Zhao, J.Y., Yang, Q., Liu, W., Fu, Y.F., Li, C., Luo, M., Hu, S.L., Hu, Q.G. and Wang, L. (2012) Compact Diode MEMS External Cavity Tunable Laser with Ul-tra-Narrow Linewidth for Coherent Detection. Optics Express, 20, 19670-19682.
https://doi.org/10.1364/OE.20.019670
[20]  魏芳, 陈迪俊, 辛国锋, 等. 紧凑坚固Littman-Metcalf型可调谐外腔半导体激光器[J]. 中国激光, 2013, 40(11): 68-70, 73-76.
[21]  Gong, H., Liu, Z.G., Zhou, Y.L. and Zhang, W.B. (2014) Extending the Mode-Hop-Free Tuning Range of an External-Cavity Diode Laser by Synchronous Tuning with Mode Matching. Applied Optics, 53, 7878-7884.
https://doi.org/10.1364/AO.53.007878
[22]  Luo, W. and Duan, C.X. (2016) A Broadband Pulsed Exter-nal-Cavity Quantum Cascade Laser Operating Near 6.9 μm. Chinese Physics Letters, 33, Article ID: 024207.
https://doi.org/10.1088/0256-307X/33/2/024207
[23]  Jiménez, A., Milde, T., Staacke, N., et al. (2017) Nar-row-Line External Cavity Diode Laser Micro-Packaging in the NIR and MIR Spectral Range. Applied Physics B, 123, Article No. 207.
https://doi.org/10.1007/s00340-017-6777-9
[24]  Chichkov, N.B., Yadav, A., Zherebtsov, E., et al. (2018) Wavelength-Tunable, GaSb-Based, Cascaded Type-I Quantum-Well Laser Emitting over a Range of 300 nm. IEEE Photonics Technology Letters, 30, 1941-1943.
https://doi.org/10.1109/LPT.2018.2873049
[25]  Morten, H., Hanna, R., Sebastian, S., et al. (2020) Wide and Fast Mode-Hop Free MEMS Tunable ECDL Concept and Realization in the NIR and MIR Spectral Regime. Pro-ceedings Volume 11293, MOEMS and Miniaturized Systems XIX, San Francisco, 28 February 2020, 80-90.
https://doi.org/10.1117/12.2546213
[26]  盛立文, 葛崇琳, 曹乾涛, 等. 宽范围无跳模外腔可调谐半导体激光器[J]. 红外与激光工程, 2023, 52(8): 152-158.
[27]  Loh, W., O’Donnell, F.J., Plant, J.J., et al. (2011) Packaged, High-Power, Narrow-Linewidth Slab-Coupled Optical Waveguide External Cavity Laser (SCOWECL). IEEE Pho-tonics Technology Letters, 23, 974-976.
https://doi.org/10.1109/LPT.2011.2146245
[28]  Duraev, V.P. and Medvedev, S.V. (2014) Single-Frequency Tunable Semiconductor Lasers. Semiconductors, 48, 120-122.
https://doi.org/10.1134/S1063782614010096
[29]  潘碧玮, 余力强, 陆丹, 李林森, 张莉萌, 李召松, 苏辉, 赵玲娟. 20kHz窄线宽光纤光栅外腔半导体激光器[J]. 中国激光, 2015, 42(5): 41-45.
[30]  Zhang, L., Wei, F., Sun, G., et al. (2017) Thermal Tunable Narrow Linewidth External Cavity Laser with Thermal Enhanced FBG. IEEE Photonics Technology Letters, 29, 385-388.
https://doi.org/10.1109/LPT.2017.2648889
[31]  杜悦宁. 基于光纤光栅自注入锁定的窄线宽半导体激光器研究[D]: [硕士学位论文]. 北京: 中国科学院大学, 2018.
[32]  Gao, S., Luo, M., Jing, Z.G. and Chen, H.Y. (2020) A Tunable Dual-Wavelength Fiber Ring-Cavity Laser Based on a FBG and DFB Laser Injection. Optik, 203, Article ID: 163961.
https://doi.org/10.1016/j.ijleo.2019.163961
[33]  梁虹, 魏芳, 孙延光, 等. 基于光纤光栅的1310nm波段窄线宽混合集成外腔半导体激光器[J]. 中国激光, 2021, 48(20): 34-40.
[34]  Chu, T., Fujioka, N. and Ishizaka, M. (2009) Compact, Lower-Power-Consumption Wavelength Tunable Laser Fabricated with Silicon Photonic-Wire Waveguide Micro-Ring Resonators. Optics Express, 17, 14063-14068.
https://doi.org/10.1364/OE.17.014063
[35]  Yoon, K.H., Kwon, O.K., Kim, K.S., et al. (2011) Ring-Resonator-Integrated Tunable External Cavity Laser Employing EAM and SOA. Optics Express, 19, 25465-25470.
https://doi.org/10.1364/OE.19.025465
[36]  Debregeas, H., Ferrari, C., Cappuzzo, M.A., et al. (2014) 2kHz Linewidth C-Band Tunable Laser by Hybrid Integration of Reflective SOA and SiO2 PLC External Cavity. 2014 International Semiconductor Laser Conference, Palma de Mallorca, 7-10 September 2014, 50-51.
https://doi.org/10.1109/ISLC.2014.158
[37]  Srinivasan, S., Davenport, M., Komljenovic, T., et al. (2015) Coupled-Ring-Resonator-Mirror-Based Heterogeneous III—V Silicon Tunable Laser. IEEE Photonics Journal, 7, 1-8.
https://doi.org/10.1109/JPHOT.2015.2428255
[38]  Fan, Y., Epping, P.J., Oldenbeuving, M.R., et al. (2016) Optically Integrated InP—Si3N4 Hybrid Laser. IEEE Photonics Journal, 8, 1-11.
https://doi.org/10.1109/JPHOT.2016.2633402
[39]  Fan, Y., Oldenbeuving, R.M., Roeloffzen, C.G.H., et al. (2017) 290 Hz Intrinsic Linewidth from an Integrated Optical Chip-Based Widely Tunable InP-Si3N4 Hybrid Laser. 2017 Conference on Lasers and Electro-Optics (CLEO), San Jose, 14-19 May 2017, 1-2.
https://doi.org/10.1364/CLEO_AT.2017.JTh5C.9
[40]  Guan, H., Novack, A., Galfsky, T., et al. (2018) Widely-Tunable, Narrow-Linewidth III-V/Silicon Hybrid External-Cavity Laser for Coherent Communication. Op-tics Express, 26, 7920-7933.
https://doi.org/10.1364/OE.26.007920
[41]  Lin, Y., Fan, Y., Boller, K.J., et al. (2018) Characterization of Hybrid InP-TriPleX Photonic Integrated Tunable Lasers Based on Silicon Nitride (Si3N4/SiO2) Microring Resonators for Optical Coherent System. IEEE Photonics Journal, 10, 1-8.
https://doi.org/10.1109/JPHOT.2018.2842026
[42]  Xiang, C., Morton, P.A. and Bowers, J.E. (2019) Ul-tra-Narrow Linewidth Laser Based on a Semiconductor Gain Chip and Extended Si3N4 Bragg Grating. Optics Letters, 44, 3825-3828.
https://doi.org/10.1364/OL.44.003825
[43]  Morton, P.A., Xiang, C., Khurgin, J.B., et al. (2022) Integrated Coherent Tunable Laser (ICTL) with Ultra-Wideband Wavelength Tuning and Sub-100 Hz Lorentzian Linewidth. Journal of Lightwave Technology, 40, 1802-1809.
https://doi.org/10.1109/JLT.2021.3127155
[44]  苏庆帅, 魏芳, 陈晨, 皮浩洋, 陈迪俊, 杨丰赫, 武慧敏, 章郑豪, 杨飞, 叶青, 蔡海文. 可调谐自注入锁定窄线宽片上光源[J]. 中国激光, 2023, 50(2): 148-149.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133