By the year 2026, it is estimated that the number of smartphone users in Mexico will be approximately 118.1 million. Each smartphone has the functionality of sending and receiving SMS (Short Message Service) messages, which pose a significant threat to all users, as it makes any device vulnerable to a malware attack. In particular, worm-type malware takes advantage of this means of communication in order to spread. Studying the dynamics of malware propagation can help understand and prevent massive contagion between mobile devices. In this work, a model based on Network Automata and compartmental epidemiological models is presented, aiming to simulate, analyze and study the spread of worm-like malware through sending SMS on smartphones.
References
[1]
Statista (2022) Número de usuarios de smartphones en México 2021. https://es.statista.com/estadisticas/1077622/usuarios-de-smartphone-en-mexico/
[2]
Medina-Salas, E.I. (2021) Modelación de la dinámica de propagación de malware en smartphones por SMS basado en autómatas celulares en redes. Master’s Thesis, National Autonomous University of Mexico, Mexico City. http://132.248.9.195/ptd2021/enero/0806114/Index.html
[3]
Santillán, M.L. (2022) Epidemiologia, útil para describir e investigar la saluddelapoblacion. http://ciencia.unam.mx/leer/887/epidemiologia-util-para-describir-la-salud-de-la-poblacion
[4]
McKendrick, A.G. (1925) Applications of Mathematics to Medical Problems. Proceedings of the Edinburgh Mathematical Society, 44, 98-130. https://doi.org/10.1017/S0013091500034428
[5]
Kermack, W.O. and McKendrick, A.G. (1927) A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 115, 700-721. https://doi.org/10.1098/rspa.1927.0118
[6]
Kermack, W.O. and McKendrick, A.G. (1932) Contributions to the Mathematical Theory of Epidemics. II.—The Problem of Endemicity. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 138, 55-83. https://doi.org/10.1098/rspa.1932.0171
[7]
Kermack, W.O. and McKendrick, A.G. (1933) Contributions to the Mathematical Theory of Epidemics. III.—Further Studies of the Problem of Endemicity. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 141, 94-122. https://doi.org/10.1098/rspa.1933.0106
[8]
del Rey, A.M. (2015) Mathematical Modeling of the Propagation of Malware: A Review. Security and Communication Networks, 8, 2561-2579. https://doi.org/10.1002/sec.1186
[9]
Peng, S., Yu, S. and Yang, A. (2013) Smartphone Malware and Its Propagation Modeling: A Survey. IEEE Communications Surveys & Tutorials, 16, 925-941. https://doi.org/10.1109/SURV.2013.070813.00214
[10]
Signes-Pont, M.T., Cortés-Castillo, A., Mora-Mora, H. and Szymanski, J. (2018) Modelling the Malware Propagation in Mobile Computer Devices. Computers & Security, 79, 80-93. https://doi.org/10.1016/j.cose.2018.08.004
[11]
Xiao, X., Fu, P., Li, Q., Hu, G. and Jiang, Y. (2017) Modeling and Validation of SMS Worm Propagation over Social Networks. Journal of Computational Science, 21, 132-139. https://doi.org/10.1016/j.jocs.2017.05.011
[12]
Xiao, X., Fu, P., Hu, G., Sangaiah, A.K., Zheng, H. and Jiang, Y. (2017) SAIDR: A New Dynamic Model for SMS-Based Worm Propagation in Mobile Networks. IEEE Access, 5, 9935-9943. https://doi.org/10.1109/ACCESS.2017.2700011
[13]
Xiao, X., Fu, P., Dou, C., Li, Q., Hu, G. and Xia, S. (2017) Design and Analysis of SEIQR Worm Propagation Model in Mobile Internet. Communications in Nonlinear Science and Numerical Simulation, 43, 341-350. https://doi.org/10.1016/j.cnsns.2016.07.012
[14]
Jia, P., Liu, J., Fang, Y., Liu, L. and Liu, L. (2018) Modeling and Analyzing Malware Propagation in Social Networks with Heterogeneous Infection Rates. Physica A: Statistical Mechanics and Its Applications, 507, 240-254. https://doi.org/10.1016/j.physa.2018.05.047
[15]
Zhang, C. and Huang, H. (2016) Optimal Control Strategy for a Novel Computer Virus Propagation Model on Scale-Free Networks. Physica A: Statistical Mechanics and Its Applications, 451, 251-265. https://doi.org/10.1016/j.physa.2016.01.028
[16]
Liu, W., Liu, C., Yang, Z., Liu, X., Zhang, Y. and Wei, Z. (2016) Modeling the Propagation of Mobile Malware on Complex Networks. Communications in Nonlinear Science and Numerical Simulation, 37, 249-264. https://doi.org/10.1016/j.cnsns.2016.01.019
[17]
Hosseini, S. and Azgomi, M.A. (2016) A Model for Malware Propagation in Scale-Free Networks Based on Rumor Spreading Process. Computer Networks, 108, 97-107. https://doi.org/10.1016/j.comnet.2016.08.010
[18]
Hosseini, S. and Azgomi, M.A. (2018) The Dynamics of a SEIRS-QV Malware Propagation Model in Heterogeneous Networks. Physica A: Statistical Mechanics and Its Applications, 512, 803-817. https://doi.org/10.1016/j.physa.2018.08.081
[19]
Hosseini, S., Abdollahi Azgomi, M. and Rahmani Torkaman, A. (2016) Agent-Based Simulation of the Dynamics of Malware Propagation in Scale-Free Networks. Simulation, 92, 709-722. https://doi.org/10.1177/0037549716656060
[20]
Gan, C., Yang, M., Zhang, Z. and Liu, W. (2017) Global Dynamics and Optimal Control of a Viral Infection Model with Generic Nonlinear Infection Rate. Discrete Dynamics in Nature and Society, 2017, Article ID: 7571017. https://doi.org/10.1155/2017/7571017
[21]
Huang, S. (2018) Global Dynamics of a Network-Based WSIS Model for Mobile Malware Propagation over Complex Networks. Physica A: Statistical Mechanics and Its Applications, 503, 293-303. https://doi.org/10.1016/j.physa.2018.02.117
[22]
Liu, W. and Zhong, S. (2018) A Novel Dynamic Model for Web Malware Spreading over Scale-Free Networks. Physica A: Statistical Mechanics and Its Applications, 505, 848-863. https://doi.org/10.1016/j.physa.2018.04.015
[23]
Liu, X., Li, T., Xu, H. and Liu, W. (2019) Spreading Dynamics of an Online Social Information Model on Scale-Free Networks. Physica A: Statistical Mechanics and Its Applications, 514, 497-510. https://doi.org/10.1016/j.physa.2018.09.085
[24]
Selvam, A.G.M., Janagaraj, R., Jones, G.M., Thandalam, C. and India, S. (2018) Dynamics in a Fractional Order SIQR Model of Worm Propagation. International Journal of Pure and Applied Mathematics, 119, 549-558.
[25]
Yun, X., Li, S. and Zhang, Y. (2015) SMS Worm Propagation over Contact Social Networks: Modeling and Validation. IEEE Transactions on Information Forensics and Security, 10, 2365-2380. https://doi.org/10.1109/TIFS.2015.2455413
[26]
Peng, S., Wang, G. and Yu, S. (2013) Modeling Malware Propagation in Smartphone Social Networks. 2013 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, Melbourne, 16-18 July 2013, 196-201. https://doi.org/10.1109/TrustCom.2013.28
[27]
Peng, S., Wu, M., Wang, G. and Yu, S. (2014) Propagation Model of Smartphone Worms Based on Semi-Markov Process and Social Relationship Graph. Computers & Security, 44, 92-103. https://doi.org/10.1016/j.cose.2014.04.006
[28]
Kroc, J., Sloot, P. and Hoekstra, A. (2010) Simulating Complex Systems by Cellular Automata. Springer, Berlin. https://doi.org/10.1007/978-3-642-12203-3
[29]
Tissera, P.C., Printista, A.M. and Errecalde, M.L. (2007) Evacuation Simulations Using Cellular Automata. Journal of Computer Science and Technology, 7, 14-20.
[30]
Barabási, A.L. and Bonabeau, E. (2003) Scale-Free Networks. Scientific American, 288, 60-69. https://doi.org/10.1038/scientificamerican0503-60
[31]
Held, P., Dockhorn, A. and Kruse, R. (2014) On Merging and Dividing of Barabási-Albert Graphs. 2014 IEEE Symposium on Evolving and Autonomous Learning Systems (EALS), Orlando, 9-12 December 2014, 17-24. https://doi.org/10.1109/EALS.2014.7009499
[32]
Barabási, A.L., Albert, R. and Jeong, H. (2000) Scale-Free Characteristics of Random Networks: The Topology of the World-Wide Web. Physica A: Statistical Mechanics and Its Applications, 281, 69-77. https://doi.org/10.1016/S0378-4371(00)00018-2
[33]
Watts, D. and Strogatz, S. (1998) Collective Dynamics of ‘Small-World’ Networks. Nature, 393, 440-442. https://doi.org/10.1038/30918
[34]
Boccara, N. and Cheong, K. (1992) Automata Network SIR Models for the Spread of Infectious Diseases in Populations of Moving Individuals. Journal of Physics A: Mathematical and General, 25, 2447-2461. https://doi.org/10.1088/0305-4470/25/9/018
Miklas, A.G., Gollu, K.K., Chan, K.K., Saroiu, S., Gummadi, K.P. and De Lara, E. (2007) Exploiting Social Interactions in Mobile Systems. In: Krumm, J., Abowd, G.D., Seneviratne, A. and Strang, T., Eds., UbiComp 2007: Ubiquitous Computing, Springer, Berlin, 409-428. https://doi.org/10.1007/978-3-540-74853-3_24
[37]
Shahyad, S., Pakdaman, S., Hiedary, M., Miri, M., Asadi, M., Nasri, A. and Alipour, A.S. (2011) A Comparison of Motivation, Frequency and Content of S.M.S. Messages Sent in Boys and Girls High School Student. Procedia—Social and Behavioral Sciences, 15, 895-898. http://www.sciencedirect.com/science/article/pii/S1877042811003867 https://doi.org/10.1016/j.sbspro.2011.03.207
[38]
Meng, X., Zerfos, P., Samanta, V., Wong, S. and Lu, S. (2007) Analysis of the Reliability of a Nationwide Short Message Service. IEEE INFOCOM 2007—26th IEEE International Conference on Computer Communications, Anchorage, 6-12 May 2007, 1811-1819. https://doi.org/10.1109/INFCOM.2007.211
[39]
Statista Research Department (2016) Awareness of Internet Security Risks according to Internet Users Worldwide as of August 2016. https://www.statista.com/statistics/463767/awareness-of-online-security-risks/
[40]
Chau, M. and Reith, R. (2023) Smartphone Market Share. https://www.idc.com/promo/smartphone-market-share/os
[41]
StatCounter (2022) Mobile Operating System Market Share Worldwide. https://gs.statcounter.com/os-market-share/mobile
[42]
Mora-Torres, M., Laureano-Cruces, A.L., Ramírez-Rodríguez, J. and Espinosa-Paredes, G. (2009) Analysis and Design of the Knowledge Representation for the Implementation of a Distributed Reasoning. Revista de Matemática: Teoría y Aplicaciones, 16, 267-281. https://www.redalyc.org/articulo.oa?id=45326951007 https://doi.org/10.15517/rmta.v16i2.306