全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大气中的水资源利用:雾和露水可持续集水方法综述
Utilization of Water Resources in the Atmosphere: A Review of Methods for Continuously Collecting Water from Mist and Dew

DOI: 10.12677/IJE.2023.124051, PP. 423-429

Keywords: 大气集水,集雾器,仿生
Atmospheric Catchment
, Mist Collector, Biomimetic

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文综述了大气中的雾和露水可持续集水方法。首先,介绍了全球范围内各种类型的集雾器及其集水性能,并对一些可行性研究和效率改进的技术进行了回顾,其中包括以生物为灵感的现代创新技术。但是,由于全球雾发生的限制,雾收集技术在实际应用中存在困难。相比之下,露水采集器虽然需要冷却冷凝表面,但更为普遍使用。最后,将露水收集系统分为三类:1) 使用辐射冷却表面收集露水,2) 太阳能干燥剂系统,3) 主动冷凝技术。所有这些方法的关键目标是开发一种成本低廉、可以利用当地材料制造、无论湿度水平或地理位置如何,都能产生水的大气集水器。
This article reviews the sustainable water collection methods of fog and dew in the atmosphere. Firstly, various types of mist collectors and their water collection performance worldwide were introduced, and some feasibility studies and efficiency improvement technologies were reviewed, including modern innovative technologies inspired by biology. However, due to the limitations of global fog occurrence, there are difficulties in the practical application of fog collection technology. In contrast, dew collectors, although required to cool the condensing surface, are more commonly used. Finally, dew collection systems are divided into three categories: 1) dew collection using radiative cooling surfaces, 2) solar desiccant systems, and 3) active condensation technology. The key goal of all these methods is to develop a low-cost atmospheric water collector that can be manufactured using local materials and generate water regardless of humidity levels or geo-graphical location.

References

[1]  加快水资源保护治理推动流域高质量发展[J]. 环境保护, 2023, 51(5): 19.
[2]  孙才志, 段兴杰. 黄河流域水资源-能源-粮食系统生态可持续发展能力评价[J]. 人民黄河, 2023, 45(2): 85-90+96.
[3]  Peleka, J., Diop, C., Foko, R., Daffe, M. and Fall, M. (2021) Health Risk Assessment of Trace Metals in Drinking Water Consumed in Dakar, Senegal. Journal of Water Resource and Protection, 13, 915-930.
https://doi.org/10.4236/jwarp.2021.1312049
[4]  Chen, L.-H., Li, P.-C., Lin, Y.P., et al. (2021) Establishing a Quantification Process for Nexus Repercussions to Mitigate Environmental Impacts in a Water-Energy Interdependency Network. Resources, Conservation and Recycling, 171, Article ID: 105628.
https://doi.org/10.1016/j.resconrec.2021.105628
[5]  魏明辉, 张远, 郑天尧. 液化天然气(LNG)在海水淡化技术中的研究进展[J]. 应用化工, 2023, 52(1): 219-222.
https://doi.org/10.16581/j.cnki.issn1671-3206.20221214.005
[6]  李福林, 张其坤, 陈华伟, 王开然, 孙婷婷, 王志宁, 梁恒, 白朗明, 谷东起, 孙永根. 地下取水系统在海水淡化工程中的应用[J]. 地球科学与环境学报, 2023, 45(2): 399-413.
[7]  武恩宇, 钱国栋, 李斌. 铝基金属-有机框架材料的水吸附性能与大气集水应用[J]. 浙江大学学报(工学版), 2022, 56(1): 186-192.
[8]  李雪, 王艳君, 王玉超, 陶胜洋. 仿生表面用于雾水收集的最新研究进展[J]. 化工进展, 2023, 42(5): 2486-2503.
[9]  Shen, H.F. and Guo, F. (2019) Tritiated Water Uptake (HTO) and Loss in Maize Plant after Short-Term Exposure of Atmospheric HTO Vapor at Daytime and Nighttime. Applied Radiation and Isotopes, 154, Article ID: 108905.
https://doi.org/10.1016/j.apradiso.2019.108905
[10]  Wu, Q., Su, W., Li, Q., et al. (2021) Enabling Continuous and Improved Solar-Driven Atmospheric Water Harvesting with Ti3C2-Incorporated Metal-Organic Framework Monoliths. ACS Applied Materials & Interfaces, 13, 38906-38915.
https://doi.org/10.1021/acsami.1c10536
[11]  Gerasopoulos, K., Luedeman, W.L., et al. (2018) Effects of Engi-neered Wettability on the Efficiency of Dew Collection. ACS Applied Materials & Interfaces, 10, 4066-4076.
https://doi.org/10.1021/acsami.7b16379
[12]  Jacobs, A.F.G., Heusinkveld, B.G. and Berkowicz, S.M. (2008) Passive Dew Collection in a Grassland Area, The Netherlands. Atmospheric Research, 87, 377-385.
https://doi.org/10.1016/j.atmosres.2007.06.007
[13]  李锐, 王立达, 孙文, 舒向泉, 贺永鹏, 刘贵昌. 超疏水不锈钢网的制备及其雾水收集性能研究[J]. 现代化工, 2020, 40(11): 92-97.
[14]  Feld, S.I., Spencer, B.R. and Bolton, S.M. (2016) Improved Fog Collection Using Turf Reinforcement Mats. Journal of Sustainable Water in the Built En-vironment, 2, Article ID: 04016002.
https://doi.org/10.1061/JSWBAY.0000811
[15]  Rivera, J. and Lopez-Garcia, D. (2015) Mechanical Characteristics of Raschel Mesh and Their Application to the Design of Large Fog Collectors. Atmospheric Research, 151, 250-258.
https://doi.org/10.1016/j.atmosres.2014.06.011
[16]  Qi, B., Yang, X. and Wang, X. (2022) Ultraslippery/Hydrophilic Patterned Surfaces for Efficient Fog Harvest. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 640, Article ID: 128398.
https://doi.org/10.1016/j.colsurfa.2022.128398
[17]  Pawar, N.R., Jain, S.S. and God, S.R. (2017) Experimental Study of Fog Water Harvesting by Stainless Steel Mesh. International Journal of Scientific and Technology Research, 6, 94-101.
[18]  Rivera, J. (2011) Aerodynamic Collection Efficiency of Fog Water Collectors. Atmospheric Research, 102, 335-342.
https://doi.org/10.1016/j.atmosres.2011.08.005
[19]  Schemenauer, R.S. and Joe, P.I. (1989) The Collection Effi-ciency of a Massive Fog Collector. Atmospheric Research, 24, 53-69.
https://doi.org/10.1016/0169-8095(89)90036-7
[20]  刘吟松, 帅长庚, 陆刚, 杨雪, 汪鑫. 不同表面润湿性水润滑材料的摩擦特性[J]. 高分子材料科学与工程, 2022, 38(7): 111-120.
[21]  胡丹, 未碧贵, 郭小龙. 水处理滤料表面润湿性及表面自由能与其亲油亲水性关系的研究[J]. 广东化工, 2017, 44(3): 68-70.
[22]  Park, K.-C., Chhatre, S.S., Srinivasan, S., et al. (2013) Optimal Design of Permeable Fibernetwork Structures for Fog Harvesting. Langmuir, 29, 13269-13277.
https://doi.org/10.1021/la402409f
[23]  Yang, C.X., Wang, J., Li, J., et al. (2023) Multibioinspired Design of a Durable Janus Copper Foam with Asymmetric and Cooperative Alternating Wettability for Efficient Fog Harvesting. ACS Sustainable Chemistry & Engineering, 11, 3147-3159.
https://doi.org/10.1021/acssuschemeng.3c00376
[24]  Feng, R., Song, F., Xu, C., et al. (2021) A Quadru-ple-Biomimetic Surface for Spontaneous and Efficient Fog Harvesting. Chemical Engineering Journal, 422, Article ID: 130119.
https://doi.org/10.1016/j.cej.2021.130119
[25]  张世彤. 基于活性炭纤维的吸附式大气集水研究[D]: [硕士学位论文]. 昆明: 云南师范大学, 2022.
[26]  尹梦聪. 冷凝热回收系统的COP及效益研究[D]: [硕士学位论文]. 石家庄: 河北科技大学, 2022.
[27]  Kandeal, A.W., Joseph, A., Elsharkawy, M., et al. (2022) Research Pro-gress on Recent Technologies of Water Harvesting from Atmospheric air: A Detailed Review. Sustainable Energy Technologies and Assessments, 52, Article ID: 102000.
https://doi.org/10.1016/j.seta.2022.102000
[28]  Beysens, D., Broggini, F., Milimouk-Melnytchouk, I., Ouazzani, J. and Tixier, N. (2012) Dew Architectures—Dew Announces the Good Weather. Matérialités Contemporaines = Materiality in Its Contemporary Forms: Architecture, Perception, Fabrication, Conception. MC 2012 Symposium, Villefontaine, November 2012, 282-290.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133