|
不同信息下N-策略休假排队系统中患者均衡行为分析
|
Abstract:
患者到医院诊疗时,某些体检项目需要用到大型机器进行检查,若机器一直处于开机状态则会持续发热、加快损耗和长时间辐射,甚至可能发生故障。为解决此问题,本文主要考虑了带有N-策略和双阶段休假策略的M/M/1排队模型。本文采用“收益–成本”结构来量化患者的等待时间成本和服务后收益,由于患者往往是追求最大化自己的收益来决定去留,从而患者与患者之间出现了博弈现象。假设患者在到达时可以通过获取系统信息来做出进队或止步的决策,当受到不同信息水平影响时,患者会出现不同的思考与选择。通过构造马尔可夫状态转移方程,研究在完全可见和几乎不可见两种情形下系统的稳态分布和患者进队的均衡策略。最后本文将用一些数值例子说明,在不同信息水平下,主要参数变化对患者均衡进队概率的影响。
When patients come to the hospital for diagnosis and treatment, certain physical examination items require the use of large machines for examination. If the machine is constantly turned on, it will continue to heat, accelerate loss, and cause long-term radiation, and may even malfunction. To ad-dress this issue, this article mainly considers a M/M/1 queueing model with N-strategy and two-stage vacation strategy. Here, the “benefit-cost” structure is used to quantify the waiting time cost and post service benefits of patients. As patients often seek to maximize their own benefits to decide whether to stay or not, there is a game phenomenon between them. Assuming that patients can make decisions to enter or stop by obtaining system information upon arrival, when influenced by different levels of information, patients have different thoughts and choices. By constructing a Markov state transition equation, we will study the steady-state distribution of the system and the equilibrium strategy for patient admission in both fully visible and almost invisible situations. Fi-nally, some numerical examples are used to illustrate the impact of changes in main parameters on the balanced admission probability of patients at different levels of information.
[1] | Levy, Y. and Yechiali, U. (1975) Utilization of Idle Time in an M/G/1 Queueing System. Management Science, 22, 202-211. https://doi.org/10.1287/mnsc.22.2.202 |
[2] | 田乃硕. 休假随机服务系统[J]. 运筹学杂志, 1990(1): 17-30+70. |
[3] | Servi, L.D. and Finn, S.G. (2002) M/M/1 Queues with Working Vacations (M/M/1/WV). Performance Evalu-ation, 50, 41-52. https://doi.org/10.1016/S0166-5316(02)00057-3 |
[4] | Ye, Q. and Liu, L. (2015) The Analysis of the M/M/1 Queue with Two Vacation Policies. International Journal of Computer Mathematics, 94, 115-134. https://doi.org/10.1080/00207160.2015.1091450 |
[5] | 刘煜飞, 叶晴晴. 基于矩阵分析方法的具有双阶段休假的排队系统驱动的流模型性能分析[J]. 数学的实践与认识, 2021, 51(4): 189-199. |
[6] | 高乾. 自动扶梯设备节能技术及节能调度系统分析[J]. 中国电梯, 2022, 33(9): 10-13. |
[7] | Naor, P. and Yadin, M. (1963) Queuing Systems with a Removable SERVICE station. Journal of the Operational Research Society, 14, 393-405. https://doi.org/10.1057/jors.1963.63 |
[8] | Kella, O. (1989) Thethreshold Policy in the M/G/1 Queue with Server Vaca-tions. Naval Research Logistics, 36, 111-123. https://doi.org/10.1002/1520-6750(198902)36:1<111::AID-NAV3220360109>3.0.CO;2-3 |
[9] | 王勋, 徐秀丽. 带N策略的双阶段休假M/M/1排队系统驱动的流体模型性能分析[J/OL]. 运筹学学报: 1-11.
http://kns.cnki.net/kcms/detail/31.1732.O1.20220424.1746.052.html, 2023-11-15. |
[10] | 马庆庆, 刘维奇, 李继红. N-策略休假排队系统中异质信息患者策略分析[J]. 运筹与管理, 2021, 30(11): 40-46. |
[11] | Naor, P. (1969) The Regulation of Queue Size by Levying Tolls. Econometrica, 37, 15-24.
https://doi.org/10.2307/1909200 |
[12] | 高珊, 王金亭. 具有Bernoulli休假的不可见M/M/1重试排队模型的进队策略分析[J]. 应用数学学报, 2017, 40(1): 106-120. |
[13] | 陈莹, 叶晴晴, 武彧睿. 不完全信息下具有双阶段休假模式的排队系统均衡策略研究[J]. 数学的实践与认识, 2021, 51(8): 178-191. |
[14] | 张博, 李凯. 不可观察的N-策略工作休假M/M/1/Q排队系统分析[J]. 合肥工业大学学报(自然科学版), 2021, 44(12): 1710-1715. |
[15] | Elaydi, S.N. (2005) An In-troduction to Difference Equations. Springer, New York. |