|
近视与脉络膜厚度相关因素的研究进展
|
Abstract:
近年来,我国近视的患病人群日益增多,严重影响了公众的身心健康,加剧了社会的经济负担。近视已成为全球性的公共健康问题,探索近视的病理机制尤为重要。虽然近视发生的确切机制尚不清楚,但越来越多的证据表明脉络膜厚度的变化与近视的发生发展有着密切联系。近年随着光学相干断层扫描技术在脉络膜生物学测量中的广泛应用,我们对脉络膜有了更清晰的认知,极大地推动了脉络膜结构改变与近视的研究进展。该文将对脉络膜的结构功能、近视与脉络膜厚度的相关因素进行综述,以期为近视的防治与干预提供帮助。
In recent years, the number of patients with myopia in China is increasing, which seriously affects the physical and mental health of the public and aggravates the economic burden of the society. Myopia has become a global public health problem, and it is particularly important to explore the pathological mechanism of myopia. Although the exact mechanism of myopia is not clear, more and more evidence shows that the change of choroidal thickness is closely related to the occurrence and development of myopia. In recent years, with the wide application of optical coherence tomography in choroidal biological measurement, we have a clearer understanding of choroid, which greatly promoted the research progress of choroidal structural changes and myopia. This article will sum-marize the structure and function of choroid and the related factors of myopia and choroidal thick-ness, in order to provide help for the prevention and intervention of myopia.
[1] | Morgan, I.G., Ohno-Matsui, K. and Saw, S.M. (2012) Myopia. The Lancet, 379, 1739-1748.
https://doi.org/10.1016/S0140-6736(12)60272-4 |
[2] | Ohno-Matsui, K., Wu, P.C., Yamashiro, K., et al. (2021) IMI Pathologic Myopia. Investigative Ophthalmology & Visual Science, 62, Article 5. https://doi.org/10.1167/iovs.62.5.5 |
[3] | 杨金柳行, 王菁菁, 何鲜桂, 等. 环境因素对不同青春期阶段儿童青少年屈光发育的影响因素分析[J]. 中国学校卫生, 2022, 43(7): 974-977, 981. |
[4] | 李红飞, 莫健. 中国青少年近视情况及影响因素分析[J]. 现代预防医学, 2021, 48(14): 2552-2557. |
[5] | 陈军, 何鲜桂, 王菁菁, 等. 2021至2030年我国6~18岁学生近视眼患病率预测分析[J]. 中华眼科杂志, 2021, 57(4): 261-267. |
[6] | Holden, B.A., Fricke, T.R., Wilson, D.A., et al. (2016) Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology, 123, 1036-1042. https://doi.org/10.1016/j.ophtha.2016.01.006 |
[7] | Verkicharla, P.K., Ohno-Matsui, K. and Saw, S.M. (2015) Cur-rent and Predicted Demographics of High Myopia and an Update of Its Associated Pathological Changes. Ophthalmic & Physiological Optics, 35, 465-475.
https://doi.org/10.1111/opo.12238 |
[8] | 包力, 杨涛, 王晓悦, 等. 近视患者视网膜及脉络膜厚度分析[J]. 华西医学, 2017, 32(10): 1520-1524. |
[9] | Jin, P.Y., Zou, H.D., et al. (2016) Choroidal and Retinal Thickness in Children with Different Refractive Status Measured by Swept-Source Optical Coherence Tomography. American Journal of Oph-thalmology, 168, 164-176. |
[10] | Xie, J.M., Ye, L.Y., Chen, Q.Y., et al. (2022) Choroidal Thickness and Its Association with Age, Axial Length, and Refractive Error in Chinese Adults. Investigative Ophthalmology & Visual Science, 63, Ar-ticle 34.
https://doi.org/10.1167/iovs.63.2.34 |
[11] | Summers, J.A. (2013) The Choroid as a Sclera Growth Regulator. Ex-perimental Eye Research, 114, 120-127.
https://doi.org/10.1016/j.exer.2013.03.008 |
[12] | Nickla, D.L. and Wallman, J. (2010) The Multifunctional Choroid. Progress in Retinal & Eye Research, 29, 144-168.
https://doi.org/10.1016/j.preteyeres.2009.12.002 |
[13] | Linsenmeier, R.A. and Braun, R.D. (1992) Oxygen Distribu-tion and Consumption in the Cat Retina during Normoxia and Hypoxemia. Journal of General Physiology, 99, 177-197. https://doi.org/10.1085/jgp.99.2.177 |
[14] | Zhang, Y. and Wildsoet, C.F. (2015) RPE and Choroid Mechanisms Underlying Ocular Growth and Myopia. Progress in Molecular Biology and Translational Science, 134, 221-240. https://doi.org/10.1016/bs.pmbts.2015.06.014 |
[15] | Wallman, J., Wildsoet, C., Xu, A., et al. (1995) Moving the Retina: Choroidal Modulation of Refractive State. Vision Research, 35, 37-50. https://doi.org/10.1016/0042-6989(94)E0049-Q |
[16] | Tan, C., Kai, X.C., Lim, L.W. and Li, K.Z. (2013) Topo-graphic Variation of Choroidal and Retinal Thicknesses at the Macula in Healthy Adults. The British Journal of Oph-thalmology, 98, 339-344.
https://doi.org/10.1136/bjophthalmol-2013-304000 |
[17] | Xiong, S., He, X., Deng, J., et al. (2017) Choroidal Thickness in 3001 Chinese Children Aged 6 to 19 Years Using Swept-Source OCT. Scientific Reports, 7, Article No. 45059. https://doi.org/10.1038/srep45059 |
[18] | Xiong, S., He, X., Zhang, B., et al. (2020) Changes in Choroidal Thickness Varied by Age and Refraction in Children and Adolescents: A 1-Year Longitudinal Study. American Journal of Ophthalmology, 213, 46-56.
https://doi.org/10.1016/j.ajo.2020.01.003 |
[19] | 霍妍佼, 郭彦, 王怀洲, 等. 成年人黄斑中心凹下脉络膜厚度随年龄变化规律及影响因素分析[J]. 中华实验眼科杂志, 2021, 39(1): 29-33. |
[20] | 曾婧, 刘冉, 张新愉, 等. 正常眼后极部脉络膜厚度号性别的关系研究[J]. 中华眼科杂志, 2012, 48(12): 1093-1096. |
[21] | 周玉梅, 张晶. 性别和激素水平对脉络膜循环的影响[J]. 眼科新进展, 2002, 22(1): 33-34. |
[22] | Burfield, H.J., Carkeet, A. and Ostrin, L.A. (2019) Ocular and Systemic Diurnal Rhythms in Emmetropic and Myopic Adults. Investigative Ophthalmology & Visual Science, 60, 2237-2247. https://doi.org/10.1167/iovs.19-26711 |
[23] | Pendrak, K., Papastergiou, G.I., Lin, T., et al. (2000) Choroidal Vascular Permeability in Visually Regulated Eye Growth. Experimental Eye Research, 70, 629-637. https://doi.org/10.1006/exer.2000.0825 |
[24] | Nickla, D.L., Wildsoet, C. and Wallma, J. (1997) Compensation for Spectacle Lenses Involves Changes in Proteoglycan Synthesis in Both the Sclera and Choroid: ERRATUM. Current Eye Research, 16, 320-326.
https://doi.org/10.1076/ceyr.16.4.320.10697 |
[25] | Rada, J. and Palmer, L. (2007) Choroidal Regulation of Scleral Glycosaminoglycan Synthesis during Recovery from Induced Myopia. Investigative Ophthalmology & Visual Science, 48, 2957-2966. https://doi.org/10.1167/iovs.06-1051 |
[26] | Sheng, C.K., Zhu, X. and Wallman, J. (2012 VEGF Thins the Choroid Transiently and Increases Scleral GAG Synthesis in Vitro. http://legis.state.va.us/.2012 |
[27] | Sheng, C., Zhu, X. and Wallman, J. (2013) In Vitro Effects of Insulin and RPE on Choroidal and Scleral Components of Eye Growth in Chicks. Experimental Eye Research, 116, 439-448. https://doi.org/10.1016/j.exer.2013.08.005 |
[28] | 李国平, 吴建峰, 叶翔, 等. 豚鼠眼球正视化过程中T-PA在脉络膜中表达的变化[J]. 眼科新进展, 2016, 36(6): 516-519. |
[29] | Jobling, A.I., Wan, R., Gentle, A., et al. (2009) Retinal and Choroidal TGF-β in the Tree Shrew Model of Myopia: Isoform Expression, Activation and Effects on Function. Experimental Eye Research, 88, 458-466.
https://doi.org/10.1016/j.exer.2008.10.022 |
[30] | Jobling, A.I., Nguyen, M., Gentle, A., et al. (2004) Iso-form-Specific Changes in Scleral Transforming Growth Factor-β Expression and the Regulation of Collagen Synthesis during Myopia Progression. Journal of Biological Chemistry, 279, 18121-18126. https://doi.org/10.1074/jbc.M400381200 |
[31] | Kinoshita, T., Mitamura1, Y., Shinomiya, K., et al. (2017) Diurnal Variations in Luminal and Stromal Areas of Choroid in Normal Eyes. British Journal of Ophthalmology, 101, 360-364.
https://doi.org/10.1136/bjophthalmol-2016-308594 |
[32] | Zhang, S., Zhang, G.Y., et al. (2019) Changes in Cho-roidal Thickness and Choroidal Blood Perfusion in Guinea Pig Myopia. Investigative Ophthalmology & Visual Science, 60, 3074-3083. https://doi.org/10.1167/iovs.18-26397 |
[33] | Alshareef, R.A., et al. (2017) Choroidal Vascular Analysis in Myopic Eyes: Evidence of Foveal Medium Vessel Layer Thinning. International Journal of Retina and Vit-reous, 3, Article No. 28. https://doi.org/10.1186/s40942-017-0081-z |
[34] | Zhou, X., Zhang, S., Yang, F., et al. (2021) Decreased Choroidal Blood Perfusion Induces Myopia in Guinea Pigs. Investigative Ophthalmology & Visual Science, 62, Article 30. https://doi.org/10.1167/iovs.62.15.30 |
[35] | Zhou, X., Zhang, S., Zhang, G., et al. (2020) In-creased Choroidal Blood Perfusion Can Inhibit Form Deprivation Myopia in Guinea Pigs. Investigative Ophthalmology & Visual Science, 61, Article 25.
https://doi.org/10.1167/iovs.61.13.25 |
[36] | Mayss, A.S., Nopasak, P., Rosa, D.M., et al. (2017) Quantitative OCT Angiography of the Retinal Microvasculature and the Choriocapillaris in Myopic Eyes. Investigative Ophthalmology & Visual Science, 58, 2063-2069.
https://doi.org/10.1167/iovs.16-21289 |
[37] | Gupta, P., Thakku, G., Saw, S.M., et al. (2017) Characterization of Choroidal Morphologic and Vascular Features in Young Men with High Myopia Using Spectral-Domain Optical Co-herence Tomography. American Journal of Ophthalmology, 177, 27-33. https://doi.org/10.1016/j.ajo.2017.02.001 |
[38] | Jiang, R., Wang, Y.X., Wei, W.B., Xu, L. and Jonas, J.B. (2015) Peripapillary Choroidal Thickness in Adult Chinese: The Beijing Eye Study. Investigative Opthalmology & Visual Sci-ence, 56, 4045-4052.
https://doi.org/10.1167/iovs.15-16521 |
[39] | Read, S.A., Fuss, J.A., Vincent, S.J., et al. (2019) Choroidal Changes in Human Myopia: Insights from Optical Coherence Tomography Imaging. Clinical and Experimental Optometry, 102, 270-285. https://doi.org/10.1111/cxo.12862 |
[40] | He, X., Jin, P., Zou, H., et al. (2017) Choroidal Thickness in Healthy Chinese Children Aged 6 to 12: The Shanghai Children Eye Study. Retina, 37, 368-375. https://doi.org/10.1097/IAE.0000000000001168 |
[41] | Fontaine, M., Gaucher, D., Sauer, A. and Speeg-Schatz, C. (2017) Choroidal Thickness and Ametropia in Children: A Longitudinal Study. European Journal of Ophthalmology, 27, 730-734. |
[42] | Zhang, J.M., et al. (2015) Macular Choroidal Thickness in Children: The Shandong Children Eye Study. Investigative Ophthalmology & Visual Science, 56, 7646-7652. |
[43] | Read, S.A., Alonso-Caneiro, D., Vincent, S.J. and Collins, M.J. (2015) Longitudinal Changes in Choroidal Thickness and Eye Growth in Childhood. Investigative Oph-thalmology & Visual Science, 56, 3103-3112. |
[44] | Steinmetz, P. (2012) Subfoveal Choroidal Thickness. The Beijing Eye Study. Acta Ophthalmologica, 90.
https://doi.org/10.1111/j.1755-3768.2012.S033.x |
[45] | Deng, J., Li, X., Jin, J., et al. (2018) Distribution Pattern of Choroidal Thickness at the Posterior Pole in Chinese Children with Myopia. Investigative Ophthalmology & Visual Sci-ence, 59, 1577-1586.
https://doi.org/10.1167/iovs.17-22748 |
[46] | Gupta, P., et al. (2015) Peripapillary Choroidal Thickness in Young Asians with High Myopia. Investigative Ophthalmology & Visual Science, 56, 1475-1481. https://doi.org/10.1167/iovs.14-15742 |
[47] | Jin, P., Zou, H., Xu, X., et al. (2018) Longitudinal Changes in Cho-roidal and Retinal Thicknesses in Children with Myopic Shift. Retina, 39, 1091-1099. |
[48] | 魏文斌, 邵蕾. 重视对脉络膜厚度及结构的研究[J]. 中华眼科杂志, 2014(6): 401-405. |
[49] | 胡红梅, 胡郑君, 严吕霞, 等. 屈光参差眼屈光度差值与脉络膜厚度和眼轴的相关性研究[J]. 国际眼科杂志, 2017, 17(1): 177-179. |
[50] | Woodman, E.C., Read, S.A. and Collins, M.J. (2012) Axial Length and Choroidal Thickness Changes Accompanying Prolonged Accommoda-tion in Myopes and Emmetropes. Vision Research, 72, 34-41.
https://doi.org/10.1016/j.visres.2012.09.009 |
[51] | Bulut, A., ?ner, V., Büyüktarak??, ?. and Kaim, M. (2016) As-sociations between Choroidal Thickness, Axial Length and Spherical Equivalent in a Paediatric Population. Clinical and Experimental Optometry, 99, 356-359.
https://doi.org/10.1111/cxo.12353 |
[52] | Flores-Mqreno, I., Lugo, F., Duker, J.S. and Ruiz-Moreno, J.M. (2013) The Relationship between Axial Length and Choroidal Thickness in Eyes with High Myopia. American Journal of Oph-thalmology, 155, 314-319.E1.
https://doi.org/10.1016/j.ajo.2012.07.015 |
[53] | Li, X.Q., Larsen, M. and Munch, I.C. (2011) Subfoveal Choroidal Thickness in Relation to Sex and Axial Length in 93 Danish University Students. Investigative Ophthalmology & Visual Science, 52, 8438-8441.
https://doi.org/10.1167/iovs.11-8108 |
[54] | Mathias, H.H., et al. (2019) Five-Year Change in Choroidal Thickness in Relation to Body Development and Axial Eye Elongation: The CCC2000 Eye Study. Investigative Ophthalmology & Visual Science, 60, 3930-3936.
https://doi.org/10.1167/iovs.19-26807 |
[55] | Nickla, D.L. and Totonelly, K. (2016) Choroidal Thickness Predicts Ocular Growth in Normal Chicks But Not in Eyes with Experimentally Altered Growth. Clinical & Experimental Op-tometry, 98, 564-570.
https://doi.org/10.1111/cxo.12317 |
[56] | Liu, B.Q., Wang, Y., Li, T., et al. (2018) Correlation of Subfoveal Cho-roidal Thickness with Axial Length, Refractive Error, and Age in Adult Highly Myopic Eyes. BMC Ophthalmology, 18, Article No. 127.
https://doi.org/10.1186/s12886-018-0791-5 |
[57] | Ikuno, Y. and Tano, Y. (2009) Retinal and Choroidal Biometry in Highly Myopic Eyes with Spectral-Domain Optical Coherence Tomography. Investigative Ophthalmology & Visual Sci-ence, 50, 3876-3880.
https://doi.org/10.1167/iovs.08-3325 |
[58] | Nickla, D.L., Zhu, X. and Wallman, J. (2013) Effects of Muscarinic Agents on Chick Choroids in Intact Eyes and Eyecups: Evidence for a Muscarinic Mechanism in Choroidal Thinning. Ophthalmic and Physiological Optics, 33, 245-256.
https://doi.org/10.1111/opo.12054 |
[59] | Fischer, A.J., Mckinnon, L.A., Nathanson, N.M. and Stell, W.K. (1998) Identification and Localization of Muscarinic Acetylcholine Receptors in the Ocular Tissues of the Chick. Journal of Comparative Neurology, 392, 273-284.
https://doi.org/10.1002/(SICI)1096-9861(19980316)392:3<273::AID-CNE1>3.0.CO;2-Z |
[60] | Ye, L., Shi, Y., Yin, Y., et al. (2020) Effects of Atropine Treatment on Choroidal Thickness in Myopic Children. Investigative Ophthalmology & Visual Science, 61, Article 15. https://doi.org/10.1167/iovs.61.14.15 |
[61] | Yam, J.C., Jiang, Y., Lee, J., et al. (2021) The Association of Choroidal Thickening by Atropine with Treatment Effects for Myopia: Two-Year Clinical Tri-al of the Low-Concentration Atropine for Myopia Progression (LAMP) Study. American Journal of Ophthalmology, 237, 130-138. |
[62] | Lee, J.H., Hong, I.H., Lee, T.Y., et al. (2020) Choroidal Thickness Changes after Orthokeratology Lens Wearing in Young Adults with Myopia. Ophthalmic Research, 64, 121-127. https://doi.org/10.1159/000510715 |
[63] | Li, Z.Y., Cui, D.M. et al. (2017) Choroidal Thickness and Axial Length Changes in Myopic Children Treated with Orthokeratology. Contact Lens & Anterior Eye, 40, 417-423. |
[64] | Mcfadden, S.A., Tse, D.Y., Bowrey, H.E., et al. (2014) Integration of Defocus by Dual Power Fresnel Lenses Inhibits Myopia in the Mammalian Eye. Investigative Ophthalmology & Visual Science, 55, 908-917.
https://doi.org/10.1167/iovs.13-11724 |
[65] | Sankaridurg, P. (2017) Contact Lenses to Slow Progression of Myopia. Clinical and Experimental Optometry, 100, 432-437. https://doi.org/10.1111/cxo.12584 |
[66] | 刘长辉, 魏栋栋, 梁玲. 配戴减少周边远视离焦眼镜对近视儿童眼部参数的影响[J]. 国际眼科杂志, 2019, 19(5): 878-880. |
[67] | Chakraborty, R., Read, S.A. and Collins, M.J. (2012) Monocular Myopic Defocus and Daily Changes in Axial Length and Choroidal Thickness of Human Eyes. Experimental Eye Research, 103, 47-54.
https://doi.org/10.1016/j.exer.2012.08.002 |
[68] | Wang, D., Chun, R.K., Liu, M., et al. (2016) Optical Defocus Rapidly Changes Choroidal Thickness in Schoolchildren. PLOS ONE, 11, e0161535. https://doi.org/10.1371/journal.pone.0161535 |
[69] | Zhang, Z., Qi, Y., Wei, W., et al. (2021) Investigation of Macu-lar Choroidal Thickness and Blood Flow Change by Optical Coherence Tomography Angiography after Posterior Scleral Reinforcement. Frontiers in Medicine, 8, Article 658259. https://doi.org/10.3389/fmed.2021.658259 |
[70] | 许军, 彭程, 杨德琪, 等. 后巩膜加固术对病理性近视球后血管血流动力学及脉络膜厚度的影响[J]. 中华眼视光学与视觉科学杂志, 2016, 18(5): 264-268. |
[71] | 张熙芳, 乔利亚, 李晓霞, 等. 病理性近视眼患者后巩膜加固术后视网膜及脉络膜厚度与血流改变的初步研究[J]. 中华眼科杂志, 2017, 53(1): 39-45. |
[72] | Tarutta, E.P., Markossian, G.A., Sianosyan, A.A., et al. (2020) [Choroidal Thickness in Children with Myopia and Its Changes after Surgical Strengthen-ing of the Sclera]. Vestnik Oftalmologii, 136, 10-17.
https://doi.org/10.17116/oftalma202013603110 |
[73] | Xu, Z., Gui, S., Huang, J., et al. (2020) Effect of Femtosecond Laser in Situ Keratomileusis on the Choriocapillaris Perfusion and Choroidal Thickness in Myopic Patients. Current Eye Research, 46, 878-884.
https://doi.org/10.1080/02713683.2020.1833350 |
[74] | Zhang, J., He, F.L., Liu, Y., et al. (2020) Comparison of Choroidal Thickness in High Myopic Eyes after FS-LASIK versus Implantable Collamer Lens Implantation with Swept-Source Optical Coherence Tomography. International Ophthalmology, 13, 773-781. https://doi.org/10.18240/ijo.2020.05.12 |
[75] | Li, M., Cheng, H., Yuan, Y., et al. (2016) Change in Choroidal Thickness and the Relationship with Accommodation following Myopic Excimer laSer Surgery. Eye, 30, 972-978. https://doi.org/10.1038/eye.2016.75 |