全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

血糖波动与认知功能障碍关系的研究进展
Research Progress on the Relationship between Blood Glucose Fluctuation and Cog-nitive Dysfunction

DOI: 10.12677/ACM.2023.13112532, PP. 18032-18037

Keywords: 血糖波动,认知功能障碍,异常血糖
Blood Glucose Fluctuation
, Cognitive Dysfunction, Abnormal Blood Glucose

Full-Text   Cite this paper   Add to My Lib

Abstract:

认知功能障碍是指高级智力加工过程中出现的异常,包括学习、记忆和批判性思维。随着全球人口老龄化,认知功能障碍得到社会各界更多的关注。痴呆症作为认知功能下降的尾章,致残率高且代价高昂。血糖波动是近年来糖尿病领域关注的热点,又称血糖漂移。血糖正常波动属于正常生理现象,但作为异常病理现象的异常血糖波动往往对机体有损害。近年来的研究发现血糖波动与认知功能障碍的发生关系微妙。基于此,本文对血糖波动的定义、常见原因以及认知功能的定义和其发展进行总结,分析血糖波动与认知功能障碍的可能机制,以期阐明血糖波动与认知功能障碍的关系,减少血糖波动,尽早发现、干预并延缓认知功能的减退。
Cognitive dysfunction refers to abnormalities in higher intellectual processing, which includes learning, memory and critical thinking. As the global population ages, cognitive dysfunction got more attention from all sectors of society. Dementia, the tail chapter of cognitive decline, is disa-bling and costly. Blood glucose fluctuations had been a hot topic of interest in the field of diabetes, it can also be referred to as blood sugar drift. Normal blood glucose fluctuations are normal physio-logical phenomena, but abnormal blood glucose fluctuation as an abnormal pathology are often damaging to the body. In recent years, a plenty of research found that fluctuating blood glucose has a subtle relationship with cognitive impairment. Based on that, this paper summarised the defini-tion and common causes of blood sugar fluctuations, as well as the definition and development of cognitive function. It also analysed the possible mechanisms of blood sugar fluctuations and cogni-tive dysfunction, in order to clarify the relationship between blood sugar fluctuations and cognitive dysfunction, and try to reduce blood sugar fluctuations and detect, intervene, and delay cognitive decline as early as possible.

References

[1]  中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) [J]. 中华糖尿病杂志, 2021, 13(4): 315-409.
[2]  贾小佼, 辛晓琼. 血糖变异性和高血糖对急性缺血性脑卒中后认知功能障碍的影响[J]. 脑与神经疾病杂志, 2019, 27(9): 556-560.
[3]  Sünram-Lea, S.I. and Owen, L. (2017) The Impact of Diet-Based Glycaemic Response and Glu-cose Regulation on Cognition: Evidence across the Lifespan. The Proceedings of the Nutrition Society, 76, 466-477.
https://doi.org/10.1017/S0029665117000829
[4]  Kielstein, J.T. (2013) Glucose Levels and Risk of Dementia. The New England Journal of Medicine, 369, 1863-1864.
https://doi.org/10.1056/NEJMc1311765
[5]  Kuroda, M., Shinke, T., Sakaguchi, K., et al. (2015) Effect of Daily Glucose Fluctuation on Coronary Plaque Vulnerability in Patients Pre-Treated with Lipid-Lowering Therapy: A Prospec-tive Observational Study. JACC Cardiovascular Interventions, 8, 800-811.
https://doi.org/10.1016/j.jcin.2014.11.025
[6]  Abdelzaher, L.A., Imaizumi, T., Suzuki, T., et al. (2016) Astaxan-thin Alleviates Oxidative Stress Insults-Related Derangements in Human Vascular Endothelial Cells Exposed to Glucose Fluctuations. Life Sciences, 150, 24-31.
https://doi.org/10.1016/j.lfs.2016.02.087
[7]  Tsai, C.J., Hsieh, C.J., Tung, S.C., et al. (2012) Acute Blood Glu-cose Fluctuations Can Decrease Blood Glutathione and Adiponectin Levels in Patients with Type 2 Diabetes. Diabetes Research and Clinical Practice, 98, 257-263.
https://doi.org/10.1016/j.diabres.2012.09.013
[8]  Monnier, L., Colette, C. and Owens, D.R. (2018) The Applica-tion of Simple Metrics in the Assessment of Glycaemic Variability. Diabetes & Metabolism, 44, 313-319.
https://doi.org/10.1016/j.diabet.2018.02.008
[9]  Wu, N., Shen, H., Liu, H., et al. (2016) Acute Blood Glucose Fluctuation Enhances Rat Aorta Endothelial Cell Apoptosis, Oxidative Stress and Pro-Inflammatory Cytokine Expression in Vivo. Cardiovascular Diabetology, 15, Article No. 109.
https://doi.org/10.1186/s12933-016-0427-0
[10]  倪佳英, 马晓静, 周健. 血糖波动异常与糖尿病并发症的研究进展[J]. 中华糖尿病杂志, 2022, 14(4): 388-392.
https://doi.org/10.3760/cma.j.cn115791-20210510-00262
[11]  Peyser, T.A., Balo, A.K., Buckingham, B.A., et al. (2018) Glycemic Variability Percentage: A Novel Method for Assessing Glycemic Variability from Continuous Glucose Monitor Data. Diabetes Technology & Therapeutics, 20, 6-16.
https://doi.org/10.1089/dia.2017.0187
[12]  Tollitt, J., Odudu, A., Montaldi, D., et al. (2020) Cognitive Impairment in Patients with Moderate to Severe Chronic Kidney Disease: The Salford Kidney Cohort Study. Clinical Kidney Journal, 14, 1639-1648.
https://doi.org/10.1093/ckj/sfaa178
[13]  Ahern, E. and Semkovska, M. (2017) Cognitive Functioning in the First-Episode of Major Depressive Disorder: A Systematic Review and Meta-Analysis. Neuropsychology, 31, 52-72.
https://doi.org/10.1037/neu0000319
[14]  Hugo, J. and Ganguli, M. (2014) Dementia and Cognitive Impairment: Epidemiology, Diagnosis, and Treatment. Clinics in Geriatric Medicine, 30, 421-442.
https://doi.org/10.1016/j.cger.2014.04.001
[15]  Biessels, G.J., Janssen, J., van den Berg, E., et al. (2018) Rationale and Design of the CAROLINA?—Cognition Substudy: A Randomised Controlled Trial on Cognitive Outcomes of Linagliptin versus Glimepiride in Patients with Type 2 Diabetes Mellitus. BMC Neurology, 18, Article No. 7.
https://doi.org/10.1186/s12883-018-1014-7
[16]  Yang, X., Chen, Y., Zhang, W., et al. (2020) Association between Inflammatory Biomarkers and Cognitive Dysfunction Analyzed by MRI in Diabetes Patients. Diabetes, Metabolic Syn-drome and Obesity: Targets and Therapy, 13, 4059-4065.
https://doi.org/10.2147/DMSO.S271160
[17]  Sheelakumari, R., Bineesh, C., Varghese, T., et al. (2020) Neuroan-atomical Correlates of Apathy and Disinhibition in Behavioural Variant Frontotemporal Dementia. Brain Imaging and Behavior, 14, 2004-2011.
https://doi.org/10.1007/s11682-019-00150-3
[18]  Perri, R., Fadda, L., Caltagirone, C., et al. (2013) Word List and Story Recall Elicit Different Patterns of Memory Deficit in Patients with Alzheimer’s Disease, Frontotemporal Dementia, Subcortical Ischemic Vascular Disease, and Lewy Body Dementia. Journal of Alzheimer’s Disease: JAD, 37, 99-107.
https://doi.org/10.3233/JAD-130347
[19]  Yuan, J., Feng, L., Hu, W., et al. (2018) Use of Multimodal Magnetic Resonance Imaging Techniques to Explore Cognitive Impairment in Leukoaraiosis. Medical Science Monitor: Interna-tional Medical Journal of Experimental and Clinical Research, 24, 8910-8915.
https://doi.org/10.12659/MSM.912153
[20]  Kellar, D. and Craft, S. (2020) Brain Insulin Resistance in Alzheimer’s Disease and Related Disorders: Mechanisms and Therapeutic Approaches. The Lancet. Neurology, 19, 758-766.
https://doi.org/10.1016/S1474-4422(20)30231-3
[21]  Bayne, M., Alvarsson, A., Devarakonda, K., Li, R., Jimenez-Gonzalez, M., Garibay, D., et al. (2020) Repeated Hypoglycemia Remodels Neural Inputs and Disrupts Mito-chondrial Function to Blunt Glucose-Inhibited GHRH Neuron Responsiveness. JCI Insight, 5, e133488.
https://doi.org/10.1172/jci.insight.133488
[22]  An, Y., Varma, V.R., Varma, S., Casanova, R., Dammer, E., Plet-nikova, O., Chia, C.W., et al. (2018) Evidence for Brain Glucose Dysregulation in Alzheimer’s Disease. Alzheimer’s & Dementia, 14, 318-329.
https://doi.org/10.1016/j.jalz.2017.09.011
[23]  Malone, J.I. (2016) Diabetic Central Neuropathy: CNS Damage Re-lated to Hyperglycemia. Diabetes, 65, 355-357.
https://doi.org/10.2337/dbi15-0034
[24]  Xiang, Q., Zhang, J., Li, C.Y., et al. (2015) Insulin Resistance-Induced Hyperglycemia Decreased the Activation of Akt/CREB in Hippocampus Neurons: Molecular Evidence for Mechanism of Diabetes-Induced Cognitive Dysfunction. Neuropeptides, 54, 9-15.
https://doi.org/10.1016/j.npep.2015.08.009
[25]  曹永红, 刘燕, 汪运生, 等. 无症状低血糖及血糖波动对糖尿病心脏自主神经病变的影响[J]. 中华糖尿病杂志, 2022, 14(7): 684-689.
[26]  Zhang, W., Zhao, S., Li, Y., et al. (2013) Acute Blood Glucose Fluctuation Induces Myo-cardial Apoptosis through Oxidative Stress and Nuclear Factor-κB Activation. Cardiology, 124, 11-17.
https://doi.org/10.1159/000345436
[27]  Monnier, L., Mas, E., Ginet, C., et al. (2006) Activation of Oxidative Stress by Acute Glucose Fluctuations Compared with Sustained Chronic Hyperglycemia in Patients with Type 2 Diabetes. JAMA, 295, 1681-1687.
https://doi.org/10.1001/jama.295.14.1681
[28]  Hsieh, C.F., Liu, C.K., Lee, C.T., et al. (2019) Acute Glucose Fluc-tuation Impacts Microglial Activity, Leading to Inflammatory Activation or Self-Degradation. Scientific Reports, 9, Article No. 840.
https://doi.org/10.1038/s41598-018-37215-0
[29]  Butterfield, D.A. and Halliwell, B. (2019) Oxidative Stress, Dysfunctional Glucose Metabolism and Alzheimer Disease. Nature Reviews. Neuroscience, 20, 148-160.
https://doi.org/10.1038/s41583-019-0132-6
[30]  Zhou, Y. and Danbolt, N.C. (2014) Glutamate as a Neurotrans-mitter in the Healthy Brain. Journal of Neural Transmission (Vienna, Austria: 1996), 121, 799-817.
https://doi.org/10.1007/s00702-014-1180-8
[31]  Quincozes-Santos, A., Bobermin, L.D., de Souza, D.G., et al. (2013) Gliopreventive Effects of Guanosine against Glucose Deprivation in Vitro. Purinergic Signalling, 9, 643-654.
https://doi.org/10.1007/s11302-013-9377-0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133