全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

2D-CrOCl各向异性的力学和电子性质的第一性原理研究
Mechanical and Electronic Properties of Anisotropic 2D-CrOCl: The First-Principles Study

DOI: 10.12677/APP.2023.1311050, PP. 476-484

Keywords: 第一性原理,各向异性,机械力学,载流子迁移率,应变,电子性质
First Principles
, Anisotopic, Mechanics, Carrier Mobility, Strain, Electronic Property

Full-Text   Cite this paper   Add to My Lib

Abstract:

在本文中,我们基于密度泛函理论的第一性原理的方法计算了二维自旋半导体单层CrOCl的机械力学性质,载流子迁移率和应变下的电子性质。各向异性的晶体结构导致单层CrOCl具有各向异性的力学性质和载流子迁移率。单层CrOCl的杨氏弹性模量各向异性比为1.62,泊松比的各向异性比为2.72。我们的结果显示,沿x方向的载流子迁移率远高于沿y方向的,载流子迁移率的各向异性比分别为20.47 (电子)和24.32 (空穴)。当分别沿x和y方向施加?8%~8%的单轴应变时,我们发现单层CrOCl的电子能带结构会发生明显变化,价带顶或导带底的位置会发生改变。我们的工作为未来进一步调控单层CrOCl的光电性质和纳米自旋电子器件方面的应用提供了理论依据。
In this paper, we have employed the first-principles method based on density functional theory to calculate the mechanical, carrier mobility, and electronic properties under strain of monolayer CrOCl, a two-dimensional spin semiconductor. The anisotropic crystal structure of mono-layer CrOCl gives rise to its anisotropic mechanical properties and carrier mobility. The anisotropic ratio of Young’s modulus for monolayer CrOCl is 1.62, while the anisotropic ratio of Poisson’s ratio is 2.72. Our results demonstrate a significant anisotropy in carrier mobility, with the carrier mobility along the x-direction being much higher than that along the y-direction, with an anisotropic ratio of 20.47 (electrons) and 24.32 (holes). Furthermore, we observed a significant variation in the electronic band structure of monolayer CrOCl under uniaxial strains ranging from ?8% to 8% applied along the x and y directions, leading to a change in the position of the valence band maximum or conduction band minimum. Our findings provide a theoretical basis for future manipulation of the optoelectronic properties and nanoscale spin electronic devices of monolayer CrOCl.

References

[1]  Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.E., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669.
https://doi.org/10.1126/science.1102896
[2]  Miao, N., Xu, B., Zhu, L., Zhou, J. and Sun, Z. (2018) 2D In-trinsic Ferromagnets from van der Waals Antiferromagnets. Journal of the American Chemical Society, 140, 2417-2420.
https://doi.org/10.1021/jacs.7b12976
[3]  Nair, A., Rani, S., Kamalakar, M.V. and Ray, S.J. (2020) Bi-Stimuli Assisted Engineering and Control of Magnetic Phase in Monolayer CrOCl. Physical Chemistry Chemical Physics, 22, 12806-12813.
https://doi.org/10.1039/D0CP01204A
[4]  Qing, X., Li, H., Zhong, C., Zhou, P., Dong, Z. and Liu, J. (2020) Magnetism and Spin Exchange Coupling in Strained Monolayer CrOCl. Physical Chemistry Chemical Physics, 22, 17255-17262.
https://doi.org/10.1039/D0CP01160F
[5]  Wang, Y., Gao, X., Yang, K., Gu, P., Lu, X., Zhang, S., Gao, Y., Ren, N., Dong, B. and Jiang, Y. (2022) Quantum Hall Phase in Graphene Engineered by Interfacial Charge Coupling. Nature Nanotechnology, 17, 1272-1279.
https://doi.org/10.1038/s41565-022-01248-4
[6]  Li, S., Zhang, J., Li, Y., Zhang, K., Zhu, L., Gao, W., Li, J. and Huo, N. (2023) Anti-Ambipolar and Polarization-Resolved Behavior in MoTe2 Channel Sensitized with Low-Symmetric CrOCl. Applied Physics Letters, 122, Article ID: 083503.
https://doi.org/10.1063/5.0133455
[7]  Gu, X., Wei, Y., Yin, X., Li, B. and Yang, R. (2018) Colloquium: Phononic Thermal Properties of Two-Dimensional Materials. Reviews of Modern Physics, 90, Article ID: 041002.
https://doi.org/10.1103/RevModPhys.90.041002
[8]  Yan, J.A., Gao, S.P., Stein, R. and Coard, G. (2015) Tuning the Electronic Structure of Silicene and Germanene by Biaxial Strain and Electric Field. Physical Review B, 91, Article ID: 245403.
https://doi.org/10.1103/PhysRevB.91.245403
[9]  Sopiha, K.V., Malyi, O.I. and Persson, C. (2019) First-Principles Mapping of the Electronic Properties of Two-Dimensional Materials for Strain-Tunable Nanoelec-tronics. ACS Applied Nano Materials, 2, 5614-5624.
https://doi.org/10.1021/acsanm.9b01164
[10]  Liu, H., Neal, A.T., Zhu, Z., Luo, Z., Xu, X., Tománek, D. and Ye, P.D. (2014) Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility. ACS Nano, 8, 4033-4041.
https://doi.org/10.1021/nn501226z
[11]  Fei, R. and Yang, L. (2014) Strain-Engineering the Ani-sotropic Electrical Conductance of Few-Layer Black Phosphorus. Nano Letters, 14, 2884-2889.
https://doi.org/10.1021/nl500935z
[12]  Liang, R., Wang, J. and Xu, J. (2009) Fabrication of High Quality SiGe Virtual Substrates by Combining Misfit Strain and Point Defect Techniques. Tsinghua Science and Technology, 14, 62-67.
https://doi.org/10.1016/S1007-0214(09)70008-2
[13]  Bhowmick, S. and Shenoy, V.B. (2006) Effect of Strain on the Thermal Conductivity of Solids. The Journal of Chemical Physics, 125, Article ID: 164513.
https://doi.org/10.1063/1.2361287
[14]  Kresse, G. and Furthmüller, J. (1996) Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Computational Materials Science, 6, 15-50.
https://doi.org/10.1016/0927-0256(96)00008-0
[15]  Perdew, J.P., Burke, K. and Ernzerhof, M. (1997) Gen-eralized Gradient Approximation Made Simple. Physical Review Letters, 78, 1396.
https://doi.org/10.1103/PhysRevLett.78.1396
[16]  Monkhorst, H.J. and Pack, J.D. (1976) Special Points for Brillouin-Zone Integrations. Physical Review B, 13, 5188-5192.
https://doi.org/10.1103/PhysRevB.13.5188
[17]  Wang, V., Xu, N., Liu, J.C., Tang, G. and Geng, W.T. (2021) VASPKIT: A User-Friendly Interface Facilitating High-Throughput Computing and Analysis Using VASP Code. Computer Physics Communications, 267, Article ID: 108033.
https://doi.org/10.1016/j.cpc.2021.108033
[18]  Zhang, R., Wu, F., Lü, T.Y., Fang, Y., Cao, X., Zhou, Y., Zhu, Z.Z. and Wu, S. (2023) Cmc21-CdO: Emerging Direct Band Gap Semiconductor with Ultrahigh Mobility and En-hanced Visible-Light Optical Absorptions. Physica B: Condensed Matter, 652, Article ID: 414645.
https://doi.org/10.1016/j.physb.2023.414645
[19]  Wang, V., Tang, G., Liu, Y.C., Wang, R.T., Mizuseki, H., Kawazoe, Y., Nara, J. and Geng, W.T. (2022) High-Throughput Computational Screening of Two-Dimensional Semiconductors. The Journal of Physical Chemistry Letters, 13, 11581-11594.
https://doi.org/10.1021/acs.jpclett.2c02972
[20]  Ravindran, P., Fast, L., Korzhavyi, P.A., Johansson, B., Wills, J. and Eriksson, O. (1998) Density Functional Theory for Calculation of Elastic Properties of Orthorhombic Crystals: Application to TiSi2. Journal of Applied Physics, 84, 4891-4904.
https://doi.org/10.1063/1.368733
[21]  Bardeen, J. and Shockley, W. (1950) Deformation Potentials and Mo-bilities in Non-Polar Crystals. Physical Review, 80, 72-80.
https://doi.org/10.1103/PhysRev.80.72
[22]  Jacobsen, R.S., Andersen, K.N., Borel, P.I., Fage-Pedersen, J., Frandsen, L.H., Hansen, O., Kristensen, M., Lavrinenko, A.V., Moulin, G. and Ou, H. (2006) Strained Silicon as a New Electro-Optic Material. Nature, 441, 199-202.
https://doi.org/10.1038/nature04706

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133