全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非匀质渐变折射率增透膜的制备方法
Preparation Method of Non-Uniform Gradient Refractive Index Antireflective Films

DOI: 10.12677/APP.2023.1311049, PP. 465-475

Keywords: 非匀质薄膜,渐变折射率,增透膜
Non-Uniform Thin Films
, Gradient Refractive Index, Antireflective Films

Full-Text   Cite this paper   Add to My Lib

Abstract:

增透膜是指具有降低表面反射率、增加透过率特性的光学薄膜。随着太阳能源、光学观测、新型光学系统等应用领域的发展,对具有宽角度增透特性的薄膜的需求越来越迫切,已经成为国内外光学领域的研究热点。本文介绍了非匀质渐变折射率增透膜倾斜沉积、干法刻蚀、湿法刻蚀制备方法和性能的最新进展,并进行了分析与评价。讨论了非匀质渐变折射率增透膜的制备在研究中面临的挑战与可行的研究方向。
The antireflective film refers to an optical thin film with the characteristics of reducing surface reflectivity and increasing transmittance. With the development of application fields such as solar energy, optical observation, and new optical systems, the demand for thin films with wide-angle antireflection properties is becoming increasingly urgent and has become a research hotspot in the optical field at home and abroad. This article introduces the latest progress in the preparation methods and properties of non-uniform gradient refractive index antireflective films by inclined deposition, dry etching, and wet etching, and analyzes and evaluates them. The challenges and feasible research directions faced in the preparation of non-uniform gradient refractive index antireflective films were discussed.

References

[1]  Wang, M., Gu, X., Ma, P., Zhang, W., Yu, D., Chang, P. and Li, D. (2017) Microstructured Superhydrophobic An-ti-Reflection Films for Performance Improvement of Photovoltaic Devices. Materials Research Bulletin, 91, 208-213.
https://doi.org/10.1016/j.materresbull.2017.03.019
[2]  ?migaj, W., Gralak, B., Pierre, R. and Tayeb, G. (2009) Antireflection Gratings for a Photonic-Crystal Flat Lens. Optics Letters, 34, 3532-3534.
https://doi.org/10.1364/OL.34.003532
[3]  Kuang, P., Eyderman, S., Hsieh, M.L., Post, A., John, S. and Lin, S.Y. (2016) Achieving an Accurate Surface Profile of a Photonic Crystal for Near-Unity Solar Absorption in a Super Thin-Film Architecture. ACS Nano, 10, 6116-6124.
https://doi.org/10.1021/acsnano.6b01875
[4]  Syed, W.A., Rafiq, N., Ali, A., Din, R.U. and Shah, W.H. (2017) Multilayer AR Coatings of TiO2/MgF2 for Application in Optoelectronic Devices. Optik, 136, 564-572.
[5]  Miyazaki, S., Komiyama, Y., Kawanomoto, S., Doi, Y., Furusawa, H., Hamana, T. and Yokota, H. (2018) Hyper Suprime-Cam: System Design and Verification of Image Quality. Publications of the Astronomical Society of Japan, 70, S1.
https://doi.org/10.1093/pasj/psx063
[6]  Liu, X., Chandrasekhar, S., Winzer, P.J., Chraplyvy, A.R., Tkach, R.W., Zhu, B. and DiGiovanni, D.J. (2012) Scrambled Coherent Superposition for En-hanced Optical Fiber Communication in the Nonlinear Transmission Regime. Optics Express, 20, 19088-19095.
https://doi.org/10.1364/OE.20.019088
[7]  Haddadi, S., Yacomotti, A.M., Sagnes, I., Raineri, F., Beaudoin, G., Le Gratiet, L. and Levenson, J.A. (2013) Photonic Crystal Coupled Cavities with Increased Beaming and Free Space Coupling Efficiency. Applied Physics Letters, 102, Article ID: 011107.
https://doi.org/10.1063/1.4772955
[8]  Scheller, M., Baker, C.W., Koch, S.W., Moloney, J.V. and Jones, R.J. (2017) High Power Dual-Wavelength VECSEL Based on a Multiple Folded Cavity. IEEE Photonics Technology Letters, 29, 790-793.
https://doi.org/10.1109/LPT.2017.2685595
[9]  Li, X., Gao, J., Xue, L. and Han, Y. (2010) Porous Polymer Films with Gradient‐Refractive-Index Structure for Broadband and Omnidirectional Antireflection Coatings. Ad-vanced Functional Materials, 20, 259-265.
https://doi.org/10.1002/adfm.200901052
[10]  Poxson, D.J., Kuo, M.L., Mont, F.W., Kim, Y.S., Yan, X., Welser, R.E. and Schubert, E.F. (2011) High-Performance Antireflection Coatings Utilizing Nanoporous Layers. MRS Bulletin, 36, 434-438.
https://doi.org/10.1557/mrs.2011.110
[11]  Chhajed, S., Poxson, D.J., Yan, X., Cho, J., Schubert, E.F., Welser, R.E. and Kim, J.K. (2011) Nanostructured Multilayer Tailored-Refractive-Index Antireflection Coating for Glass with Broadband and Omnidirectional Characteristics. Applied Physics Express, 4, Article ID: 052503.
https://doi.org/10.1143/APEX.4.052503
[12]  Sarkar, S., Pradhan, S.K. and Jeevitha, M. (2019) Factors In-fluencing the Nanostructure of Obliquely Deposited Thin Films. Surface Engineering, 35, 227-233.
https://doi.org/10.1080/02670844.2018.1458490
[13]  Lu, L., Zhang, F., Xu, Z., Zhao, S., Zhuo, Z., Song, D. and Wang, Y. (2010) Characteristics of ZnS Nanocolumn Arrays and Their Effect on the Light Outcoupling of OLEDs. Physica B: Condensed Matter, 405, 3728-3731.
https://doi.org/10.1016/j.physb.2010.05.075
[14]  Zhu, H., Cao, W., Larsen, G.K., Toole, R. and Zhao, Y. (2012) Tilting Angle of Nanocolumnar Films Fabricated by Oblique Angle Deposition. Journal of Vacuum Science & Technology B, 30, Article ID: 030606.
https://doi.org/10.1116/1.4710999
[15]  Alvarez, R., Lopez-Santos, C., Parra-Barranco, J., Rico, V., Barranco, A., Cotrino, J. and Palmero, A. (2014) Nanocolumnar Growth of Thin Films Deposited at Oblique Angles: Beyond the Tangent Rule. Journal of Vacuum Science & Technology B, 32, Article ID: 041802.
https://doi.org/10.1116/1.4882877
[16]  álvarez Molina, R., García Valenzuela, A., García-Martín, J.M., Co-trino Bautista, J., Rodríguez González-Elipe, A. and Palmero Acebedo, A. (2019) Kinetic Energy-Induced Growth Regimes of Nanocolumnar Ti Thin Films Deposited by Evaporation and Magnetron Sputtering. Nanotechnology, 30, Article ID: 475603.
https://doi.org/10.1088/1361-6528/ab3cb2
[17]  Siad, A., Besnard, A., Nouveau, C. and Jacquet, P. (2016) Critical Angles in DC Magnetron Glad Thin Films. Vacuum, 131, 305-311.
https://doi.org/10.1016/j.vacuum.2016.07.012
[18]  Mes-adi, H., Saadouni, K. and Mazroui, M. (2021) Effect of Incident Angle on the Microstructure Proprieties of Cu Thin Film Deposited on Si (001) Substrate. Thin Solid Films, 721, Article ID: 138553.
https://doi.org/10.1016/j.tsf.2021.138553
[19]  Zhao, Y., He, Y. and Brown, C. (2012) Composition Dependent Nanocolumn Tilting Angle during the Oblique Angle Co-Deposition. Applied Physics Letters, 100, Article ID: 033106.
https://doi.org/10.1063/1.3676665
[20]  Larson, S., Huang, W. and Zhao, Y. (2016) Combinatorial Fabrication of Composite Nanorods Using Oblique Angle Co-Deposition. Nanotechnology, 27, Article ID: 365304.
https://doi.org/10.1088/0957-4484/27/36/365304
[21]  Guo, X., Quan, X., Li, Z., Li, Q., Zhang, B., Zhang, X. and Song, C. (2021) Broadband Anti-Reflection Coatings Fabricated by Precise Time-Controlled and Oblique-Angle Deposition Methods. Coatings, 11, Article No. 492.
https://doi.org/10.3390/coatings11050492
[22]  Lv, Q.P., Deng, S.W., Zhang, S.Q., Gong, F.Q. and Li, G. (2017) Fabrication of Broadband Antireflection Coatings Using Broadband Optical Monitoring Mixed with Time Monitoring. Chinese Physics B, 26, Article ID: 057801.
https://doi.org/10.1088/1674-1056/26/5/057801
[23]  Sun, P., Hu, M., Zhang, F., Ji, Y.Q., Liu, H.S., Liu, D.D. and Leng, J. (2015) Effects of the Ion-Beam Voltage on the Properties of the Diamond-Like Carbon Thin Film Prepared by Ion-Beam Sputtering Deposition. Chinese Physics B, 24, Article ID: 067803.
https://doi.org/10.1088/1674-1056/24/6/067803
[24]  Khan, S.B., Wu, H. and Zhang, Z. (2018) Omnidirec-tional SiO2 AR Coatings. Coatings, 8, Article No. 210.
https://doi.org/10.3390/coatings8060210
[25]  Sarakinos, K., Alami, J. and Konstantinidis, S. (2010) High Power Pulsed Magnetron Sputtering: A Review on Scientific and Engineering State of the Art. Surface and Coatings Technology, 204, 1661-1684.
https://doi.org/10.1016/j.surfcoat.2009.11.013
[26]  Yi, K., Liu, D., Chen, X., Yang, J., Wei, D., Liu, Y. and Wei, D. (2021) Plasma-Enhanced Chemical Vapor Deposition of Two-Dimensional Materials for Applications. Accounts of Chemical Research, 54, 1011-1022.
https://doi.org/10.1021/acs.accounts.0c00757
[27]  Gholizadeh, M., Moghadam, R.Z., Mohammadi, A.A., Ehsani, M.H. and Dizaji, H.R. (2020) Design and Fabrication of MgF2 Single-Layer Antireflection Coating by Glancing Angle Deposition. Materials Research Innovations, 24, 442-446.
https://doi.org/10.1080/14328917.2020.1723991
[28]  Sood, A.K., Zeller, J.W., Sood, A.W., Welser, R.E., Ghuman, P., Babu, S. and Efstathiadis, H. (2021) Development of Nanostructured Antireflection Coating Tech-nology for IR Band for Improved Detector Performance. Sensors, Systems, and Next-Generation Satellites XXV, 11858, Article ID: 1185812.
https://doi.org/10.1117/12.2598994
[29]  Prachachet, R., Samransuksamer, B., Horprathum, M., Eiamchai, P., Limwichean, S., Chananonnawathorn, C. and Buranasiri, P. (2018) A Comparative Study on Omnidirectional Anti-Reflection SiO2 Nanostructure Films Coating by Glancing Angle Deposition. Ox-ide-Based Materials and Devices IX, 10533, 261-267.
https://doi.org/10.1117/12.2290056
[30]  Feng, C., Zhang, W., Wang, J., Ma, H., Liu, S., Yi, K. and Shao, J. (2021) Broadband Antireflection Film by Glancing Angle Deposition. Optical Materials, 111, Article ID: 110720.
https://doi.org/10.1016/j.optmat.2020.110720
[31]  Saint-André, S., Rodríguez, D., Perillo, P. and Barrera, M. (2021) TiO2 Nanotubes Antireflection Coating Design for GaAs Solar Cells. Solar Energy Materials and Solar Cells, 230, Article ID: 111201.
https://doi.org/10.1016/j.solmat.2021.111201
[32]  Ordouie, E., Alisafaee, H. and Siahmakoun, A. (2018) Ul-tracompact Polarizing Beam Splitter Based on Single-Material Birefringent Photonic Crystal. Optics Letters, 43, 4288-4291.
https://doi.org/10.1364/OL.43.004288
[33]  Kelly, P.J. and Arnell, R.D. (2000) Magnetron Sput-tering: A Review of Recent Developments and Applications. Vacuum, 56, 159-172.
https://doi.org/10.1016/S0042-207X(99)00189-X
[34]  Alvarez, R., Garcia‐Valenzuela, A., Lopez‐Santos, C., Ferrer, F.J., Rico, V., Guillen, E. and Palmero, A. (2016) High‐Rate Deposition of Stoichiometric Compounds by Reactive Magnetron Sputtering at Oblique Angles. Plasma Processes and Polymers, 13, 960-964.
https://doi.org/10.1002/ppap.201600019
[35]  Sorge, J.B., Taschuk, M.T., Wakefield, N.G., Sit, J.C. and Brett, M.J. (2012) Metal Oxide Morphology in Argon-Assisted Glancing Angle Deposition. Journal of Vacuum Science & Technology A, 30, Article ID: 021507.
https://doi.org/10.1116/1.3687204
[36]  Kumar, V., Singh, S.K., Sharma, H., Kumar, S., Banerjee, M.K. and Vij, A. (2019) Investigation of Structural and Optical Properties of ZnO Thin Films of Different Thickness Grown by Pulsed Laser Deposition Method. Physica B: Condensed Matter, 552, 221-226.
https://doi.org/10.1016/j.physb.2018.10.004
[37]  Martinu, L., Zabeida, O. and Klemberg-Sapieha, J.E. (2010) Plasma-Enhanced Chemical Vapor Deposition of Functional Coatings. In: Martin, P.M., Ed., Handbook of Deposi-tion Technologies for Films and Coatings, Elsevier, Amsterdam, 392-465.
https://doi.org/10.1016/B978-0-8155-2031-3.00009-0
[38]  Gupta, A., Cheng, H.Y., Lin, K.H., Wu, C.T., Roy, P.K., Ghosh, S. and Chattopadhyay, S. (2019) Gold Coated Cicada Wings: Anti-Reflective Micro-Environment for Plasmonic Enhancement of Fluorescence from Upconversion Nanoparticles. Materials Science and Engineering: C, 102, 569-577.
https://doi.org/10.1016/j.msec.2019.04.080
[39]  Siddique, R.H., Gomard, G. and H?lscher, H. (2015) The Role of Random Nanostructures for the Omnidirectional Anti-Reflection Properties of the Glasswing Butterfly. Nature Communications, 6, Article No. 6909.
https://doi.org/10.1038/ncomms7909
[40]  Yao, T.F., Wu, P.H., Wu, T.M., Cheng, C.W. and Yang, S.Y. (2011) Fabrication of Anti-Reflective Structures Using Hot Embossing with a Stainless Steel Template Irradiated by Femtosecond Laser. Microelectronic Engineering, 88, 2908-2912.
https://doi.org/10.1016/j.mee.2011.03.023
[41]  Altissimo, M. (2010) E-Beam Lithography for Mi-cro-/Nanofabrication. Biomicrofluidics, 4, Article ID: 026503.
https://doi.org/10.1063/1.3437589
[42]  Lu, C. and Lipson, R.H. (2010) Interference Lithography: A Powerful Tool for Fabricating Periodic Structures. Laser & Photonics Reviews, 4, 568-580.
https://doi.org/10.1002/lpor.200810061
[43]  Okabe, T., Yano, T., Yatagawa, K. and Taniguchi, J. (2021) Polyimide Moth-Eye Nanostructures Formed by Oxygen Ion Beam Etching for Anti-Reflection Layers. Microelec-tronic Engineering, 242, Article ID: 111559.
https://doi.org/10.1016/j.mee.2021.111559
[44]  Li, Y., Zhang, J. and Yang, B. (2010) Antireflective Surfaces Based on Biomimetic Nanopillared Arrays. Nano Today, 5, 117-127.
https://doi.org/10.1016/j.nantod.2010.03.001
[45]  Zhu, J., Yu, Z., Burkhard, G.F., Hsu, C.M., Connor, S.T., Xu, Y. and Cui, Y. (2009) Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays. Nano Letters, 9, 279-282.
https://doi.org/10.1021/nl802886y
[46]  Leem, J.W., Guan, X.Y., Choi, M. and Yu, J.S. (2015) Broadband and Omnidirectional Highly-Transparent Coverglasses Coated with Biomimetic Moth-Eye Nanopatterned Polymer Films for Solar Photovoltaic System Applications. Solar Energy Materials and Solar Cells, 134, 45-53.
https://doi.org/10.1016/j.solmat.2014.11.025
[47]  Youtsey, C., Adesida, I. and Bulman, G. (1997) Highly Anisotropic Photoenhanced Wet Etching of n-Type GaN. Applied Physics Letters, 71, 2151-2153.
https://doi.org/10.1063/1.119365
[48]  Cai, J. and Qi, L. (2015) Recent Advances in Antireflective Surfaces Based on Nanostructure Arrays. Materials Horizons, 2, 37-53.
https://doi.org/10.1039/C4MH00140K
[49]  Beganskiene, A., Sakirzanovas, S., Kazadojev, I., Melninkaitis, A., Sirutkaitis, V. and Kareiva, A. (2007) Sol-Gel Derived Antireflective Coating with Controlled Thickness and Re-flective Index. Materials Science-Poland, 25, 817-824.
[50]  Prado, R., Beobide, G., Marcaide, A., Goikoetxea, J. and Aranzabe, A. (2010) Development of Multifunctional Sol-Gel Coatings: Anti-Reflection Coatings with En-hanced Self-Cleaning Capacity. Solar Energy Materials and Solar Cells, 94, 1081-1088.
https://doi.org/10.1016/j.solmat.2010.02.031
[51]  Liu, L.Q., Wang, X.L., Zhang, S.G., Zhang, G.Y., Dou, S.X. and Wang, G. (2012) Broadband and Omnidirectional, Nearly Zero Reflective Photovoltaic Glass. Advanced Ma-terials, 24, 6318-6322.
https://doi.org/10.1002/adma.201201740
[52]  Yan, H., Liu, T., Yang, K., Huang, B., Zhou, G., Jiang, X. and Yan, L. (2020) Nanoscale Etching of Microporous Coatings for Broadband Antireflection Coatings. Thin Solid Films, 698, Article ID: 137858.
https://doi.org/10.1016/j.tsf.2020.137858
[53]  Schulz, U. (2009) Wideband Antireflection Coatings by Com-bining Interference Multilayers with Structured Top Layers. Optics Express, 17, 8704-8708.
https://doi.org/10.1364/OE.17.008704
[54]  Bruynooghe, S., Schulze, M., Helgert, M., Challier, M., Tonova, D., Sundermann, M. and Kley, E.B. (2016) Broadband and Wide-Angle Hybrid Antireflection Coatings Prepared by Combining Interference Multilayers with Subwavelength Structures. Journal of Nanophotonics, 10, Article ID: 033002.
https://doi.org/10.1117/1.JNP.10.033002
[55]  Pfeiffer, K., Ghazaryan, L., Schulz, U. and Szeghalmi, A. (2019) Wide-Angle Broadband Antireflection Coatings Prepared by Atomic Layer Deposition. ACS Applied Materials & Interfaces, 11, 21887-21894.
https://doi.org/10.1021/acsami.9b03125
[56]  Jones, F.L. and Homer, H.J. (1941) Chemical Methods for In-creasing the Transparency of Glass Surfaces. JOSA, 31, 34-37.
https://doi.org/10.1364/JOSA.31.000034

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133