New results of two computer experiments on modeling of superthermal neutron-nuclear combustion of natural uranium for two different flux densities of external neutron source and duration of half a year each are presented. The simulation results demonstrate the dependence of the autowave combustion modes on the parameters of the external source.
References
[1]
Rusov, V.D., Tarasov, V.A., Eingorn, M.V., Chernezhenko, S.A., et al. (2015) Ultraslow Wave Nuclear Burning of Uranium-Plutonium Fissile Medium on Epithermal Neutrons. Progress in Nuclear Energy, 83, 105-122.
https://doi.org/10.1016/j.pnucene.2015.03.007
[2]
Feoktistov, L.P. (1989) Neutron-Fission Wave. Reports of the Academy of Sciences, 309, 864-867.
[3]
Ershov, A.P. and Anisichkin, V.F. (2003) Natural Neutron-Fission Wave. Combustion, Explosion and Shock Waves, 39, 226e231.
https://doi.org/10.1023/A:1022925403499
[4]
Rusov, V.D., Linnik, E.P., Tarasov, V.A., Zelentsova, T.N., Vaschenko, V.N., Kosenko, S.I., Beglaryan, M.E., Сhernezhenko, S.A., et al. (2011) Traveling Wave Reactor and Condition of Existence of Nuclear Burning Soliton-Like Wave in Neutron-Multiplicating Media. Energies, 4, 1337-1361.
https://doi.org/10.3390/en4091337
[5]
Rusov, V.D., Tarasov, V.A., Sharf, I.V., Vaschenko, V.M., Linnik, E.P., Zelentsova, T.N., Beglaryan, M.E., Chernegenko, S.A., et al. (2015) On Some Fundamental Peculiarities of the Traveling Wave Reactor Operation. Science and Technology of Nuclear Installations, 2015, Article ID 703069. https://doi.org/10.1155/2015/703069
[6]
Rusov, V.D., Tarasov, V.A., Eingorn, M.V., Chernezhenko, S.A., Kakaev, A.A., Smolyar, V.P., et al. (2020) Simulation of the Traveling Wave Burning on Epithermal Neutrons on the Year Time Scale. arXiv preprint arXiv:2003.11820
[7]
Pavlovich, V.N., Khotayintsev, V.N. and Khotayintseva, E.N. (2008) Physical Basis of the Nuclear Combustion Wave Reactor. I. Nuclear Physics and Energetics, 2, 39-49.
[8]
Pavlovich, V.M., Khtoyintsev, V.M. and Khtoyintseva, O.M. (2010) Reactor on a Nuclear Combustion Wave: Control of Wave Parameters.
[9]
van Dam, H. (2000) Self-Stabilizing Criticality Waves. Annals of Nuclear Energy, 27, 1505-1521. https://doi.org/10.1016/S0306-4549(00)00035-9
[10]
Sekimoto, H. (2006) Light a Candle. An Innovative Burnup Strategy of Nuclear Reactors. 2nd International Conf. on Quantum Electrodynamics and Statistical Physics (QEDSP2006), Kharkov Ukraine, 19-23 September, 2006, 306-317.
http://www.nr.titech.ac.jp/coe21/eng/index.html
[11]
Osborne, A.G. and Deinert, M.R. (2013) Comparison of Neutron Diffusion and Monte Carlo Simulations of a Fission Wave. Annals of Nuclear Energy, 62, 269-273.
https://doi.org/10.1016/j.anucene.2013.06.023
[12]
Gann, V.V., Abdulaev, A.M. and Gann, A.V. (2010) Benchmark of the Traveling Wave Reactor Using MCNPX Code. NSC “Kharkov Institute of Physics and Technology”, Kharkov, 24 с.
[13]
Cerullo, N., Chersola, D., Lomonaco, G. and Marotta, R. (2013) The Use of GFR Dedicated Assemblies in the Framework of Advanced Symbiotic Fuel Cycles: An Innovative Way to Minimize Long-Term Spent Fuel Radiotaxicity. 12th Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation, OECD 2013, Pisa, 10 p.
[14]
Rusov, V.D., Tarasov, V.A., Vaschenko, V.M., Linnik, E.P., Zelentsova, T.N., Beglaryan, M.E., Chernegenko, S.A., et al. (2013) Fukushima Plutonium Effect and Blow-Up Regimes in Neutron-Multiplying Media. World Journal of Nuclear Science and Technology, 3, 9-18. https://doi.org/10.4236/wjnst.2013.32A002