|
sST2在急性心肌梗死后心室重塑中的研究进展
|
Abstract:
急性心肌梗死(acute myocardial infarction, AMI)后会出现左心室形状改变、体积增大、梗死节段心肌变薄和非梗死节段心肌肥厚等病理变化,被称为心室重塑(ventricular remodeling, VR)。这些过程无法通过心内膜活检进行常规评估,但可通过循环中的生物标记物水平反映出来。近几年来相关研究发现多种可反映AMI后VR的生物标志物,其中可溶性致癌抑制因子2 (soluble suppression of tu-morigenicity-2, sST2)与AMI后不良预后相关。本文综述sST2在急性心肌梗死后心室重塑中的研究进展。
Acute myocardial infarction (AMI) is followed by changes in left ventricular shape, increased vol-ume and pathological changes of myocardial thinning in infarcted areas and hypertrophy in non-infarcted segments, termed ventricular remodeling (VR). These processes cannot be assessed routinely by endomyocardial biopsy but can be reflected by circulating levels of biomarkers. In re-cent years, various biomarkers reflecting VR after AMI have been identified, among which soluble suppression of tumorigenicity-2 (sST2) is associated with poor prognosis after AMI. This article re-views the research progress of sST2 in ventricular remodeling after acute myocardial infarction.
[1] | Anderson, J.L. and Morrow, D.A. (2017) Acute Myocardial Infarction. The New England Journal of Medicine, 376, 2053-2064. https://doi.org/10.1056/NEJMra1606915 |
[2] | Byrne, R.A., Rossello, X., Coughlan, J.J., et al. (2023) 2023 ESC Guidelines for the Management of Acute Coronary Syndromes. European Heart Journal, 44, 3720-3826. |
[3] | Mamas, M.A., Anderson, S.G., O’Kane, P.D., et al. (2014) Impact of Left Ventricular Function in Re-lation to Procedural Outcomes following Percutaneous Coronary Intervention: Insights from the British Cardiovascular Intervention Society. European Heart Journal, 35, 3004-3012. https://doi.org/10.1093/eurheartj/ehu303 |
[4] | Aimo, A., Vergaro, G., González, A., et al. (2022) Cardiac Remodelling—Part 2: Clinical, Imaging and Laboratory Findings. A Review from the Study Group on Biomarkers of the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure, 24, 944-958. https://doi.org/10.1002/ejhf.2522 |
[5] | Pfeffer, J.M., Pfeffer, M.A. and Braunwald, E. (1985) Influence of Chronic Captopril Therapy on the Infarcted Left Ventricle of the Rat. Cir-culation Research, 57, 84-95. https://doi.org/10.1161/01.RES.57.1.84 |
[6] | Carbone, A., D’Andrea, A., Riegler, L., et al. (2017) Cardiac Damage in Athlete’s Heart: When the “Supernormal” Heart Fails! World Journal of Cardiology, 9, 470-480. https://doi.org/10.4330/wjc.v9.i6.470 |
[7] | González, A., Richards, A.M., De Boer, R.A., et al. (2022) Cardiac Remodelling—Part 1: From Cells and Tissues to Circulating Biomarkers. A Review from the Study Group on Biomarkers of the Heart Failure Association of the European Society of Cardiology. European Journal of Heart Failure, 24, 927-943. https://doi.org/10.1002/ejhf.2493 |
[8] | Goetze, J.P., Bruneau, B.G., Ramos, H.R., et al. (2020) Cardi-ac Natriuretic Peptides. Nature Reviews Cardiology, 17, 698-717. https://doi.org/10.1038/s41569-020-0381-0 |
[9] | Murphy, S.P., Prescott, M.F., Maisel, A.S., et al. (2021) Associa-tion between Angiotensin Receptor—Neprilysin Inhibition, Cardiovascular Biomarkers, and Cardiac Remodeling in Heart Failure with Reduced Ejection Fraction. Circulation: Heart Failure, 14, e008410. https://doi.org/10.1161/CIRCHEARTFAILURE.120.008410 |
[10] | Januzzi, J.L., Prescott, M.F., Butler, J., et al. (2019) Association of Change in N-Terminal Pro-B-Type Natriuretic Peptide following Initiation of Sacubitril-Valsartan Treatment with Cardiac Structure and Function in Patients with Heart Failure with Reduced Ejection Fraction. JAMA, 322, 1085-1095. https://doi.org/10.1001/jama.2019.12821 |
[11] | Daubert, M.A., Adams, K., Yow, E., et al. (2019) NT-proBNP Goal Achievement Is Associated with Significant Reverse Remodeling and Improved Clinical Outcomes in HFrEF. JACC: Heart Failure, 7, 158-168.
https://doi.org/10.1016/j.jchf.2018.10.014 |
[12] | Hartikainen, T. and Westermann, D. (2023) Advances in Rapid Di-agnostic Tests for Myocardial Infarction Patients. Expert Review of Molecular Diagnostics, 23, 391-403. https://doi.org/10.1080/14737159.2023.2207740 |
[13] | Gohar, A., Chong, J.P.C., Liew, O.W., et al. (2017) The Prognostic Value of Highly Sensitive Cardiac Troponin Assays for Adverse Events in Men and Women with Stable Heart Failure and a Preserved vs. Reduced Ejection Fraction. European Journal of Heart Failure, 19, 1638-1647. https://doi.org/10.1002/ejhf.911 |
[14] | Steffens, S., Van Linthout, S., Sluijter, J.P.G., et al. (2020) Stimulating Pro-Reparative Immune Responses to Prevent Adverse Cardiac Remodelling: Consensus Document from the Joint 2019 Meeting of the ESC Working Groups of Cellular Biology of the Heart and Myocardial Function. Cardiovascular Re-search, 116, 1850-1862.
https://doi.org/10.1093/cvr/cvaa137 |
[15] | Swirski, F.K. and Nahrendorf, M. (2018) Cardioimmunology: The Im-mune System in Cardiac Homeostasis and Disease. Nature Reviews. Immunology, 18, 733-744. https://doi.org/10.1038/s41577-018-0065-8 |
[16] | Thanikachalam, P.V., Ramamurthy, S., Mallapu, P., et al. (2023) Modulation of IL-33/ST2 Signaling as a Potential New Therapeutic Target for Cardiovascular Diseases. Cytokine & Growth Factor Reviews, 71-72, 94-104.
https://doi.org/10.1016/j.cytogfr.2023.06.003 |
[17] | Iwahana, H., Yanagisawa, K., Ito-Kosaka, A., et al. (1999) Dif-ferent Promoter Usage and Multiple Transcription Initiation Sites of the Interleukin-1 Receptor-Related Human ST2 Gene in UT-7 and TM12 Cells. European Journal of Biochemistry, 264, 397-406. https://doi.org/10.1046/j.1432-1327.1999.00615.x |
[18] | Lee, J.S., Seppanen, E., Patel, J., et al. (2016) ST2 Recep-tor Invalidation Maintains Wound Inflammation, Delays Healing and Increases Fibrosis. Experimental Dermatology, 25, 71-74. https://doi.org/10.1111/exd.12833 |
[19] | Martin, N.T. and Martin, M.U. (2016) Interleukin 33 Is a Guardian of Barriers and a Local Alarmin. Nature Immunology, 17, 122-131. https://doi.org/10.1038/ni.3370 |
[20] | Kakkar, R. and Lee, R.T. (2008) The IL-33/ST2 Pathway: Therapeutic Target and Novel Biomarker. Nature Reviews Drug Discov-ery, 7, 827-840. https://doi.org/10.1038/nrd2660 |
[21] | Veeraveedu, P.T., Sanada, S., Okuda, K., et al. (2017) Abla-tion of IL-33 Gene Exacerbate Myocardial Remodeling in Mice with Heart Failure Induced by Mechanical Stress. Bio-chemical Pharmacology, 138, 73-80.
https://doi.org/10.1016/j.bcp.2017.04.022 |
[22] | Weinberg, E.O., Shimpo, M., De Keulenaer, G.W., et al. (2002) Expression and Regulation of ST2, an Interleukin-1 Receptor Family Member, in Cardiomyocytes and Myocardial In-farction. Circulation, 106, 2961-2966.
https://doi.org/10.1161/01.CIR.0000038705.69871.D9 |
[23] | Li, J., Cao, T., Wei, Y., et al. (2021) A Review of Novel Cardiac Biomarkers in Acute or Chronic Cardiovascular Diseases: The Role of Soluble ST2 (sST2), Lipopro-tein-Associated Phospholipase A2 (Lp-PLA2), Myeloperoxidase (MPO), and Procalcitonin (PCT). Disease Markers, 2021, Article ID: 6258865. https://doi.org/10.1155/2021/6258865 |
[24] | Lupón, J., Gaggin, H.K., De Antonio, M., et al. (2015) Biomarker-Assist Score for Reverse Remodeling Prediction in Heart Failure: The ST2-R2 Score. Interna-tional Journal of Cardiology, 184, 337-343.
https://doi.org/10.1016/j.ijcard.2015.02.019 |
[25] | Lupón, J., Sanders-Van Wijk, S., Januzzi, J.L., et al. (2016) Pre-diction of Survival and Magnitude of Reverse Remodeling Using the ST2-R2 Score in Heart Failure: A Multicenter Study. International Journal of Cardiology, 204, 242-247.
https://doi.org/10.1016/j.ijcard.2015.11.163 |
[26] | Levandovska, K.V., Vakaliuk, I.P. and Naluzhna, T.V. (2022) Marker Diagnostic Heart Failure Progression in the Post-Infarction Period. Wiadomosci Lekarskie, 75, 2476-2480. https://doi.org/10.36740/WLek202210135 |
[27] | Somuncu, M.U., Kalayci, B., Avci, A., et al. (2020) Predicting Long-Term Cardiovascular Outcomes of Patients with Acute Myocardial Infarction Using Soluble ST2. Hormone Mo-lecular Biology and Clinical Investigation, 41, Article ID: 20190062. https://doi.org/10.1515/hmbci-2019-0062 |
[28] | Mechtouff, L., Paccalet, A., Crola Da Silva, C., et al. (2022) Prog-nosis Value of Serum Soluble ST2 Level in Acute Ischemic Stroke and STEMI Patients in the Era of Mechanical Reper-fusion Therapy. Journal of Neurology, 269, 2641-2648.
https://doi.org/10.1007/s00415-021-10865-3 |
[29] | Kercheva, M., Ryabova, T., Gusakova, A., et al. (2019) Serum Soluble ST2 and Adverse Left Ventricular Remodeling in Patients with ST-Segment Elevation Myocardial Infarction. Clinical Medicine Insights: Cardiology, 13, 1-18.
https://doi.org/10.1177/1179546819842804 |
[30] | Xing, J., Liu, J. and Geng, T. (2021) Predictive Values of sST2 and IL-33 for Heart Failure in Patients with Acute Myocardial Infarction. Experimental Biology and Medicine, 246, 2480-2486.
https://doi.org/10.1177/15353702211034144 |
[31] | Pascual-Figal, D.A., Bayes-Genis, A., Asensio-Lopez, M.C., et al. (2019) The Interleukin-1 Axis and Risk of Death in Patients with Acutely Decompensated Heart Failure. Journal of the American College of Cardiology, 73, 1016-1025.
https://doi.org/10.1016/j.jacc.2018.11.054 |
[32] | Chen, L., Chen, W., Shao, Y., et al. (2022) Association of Soluble Suppression of Tumorigenicity 2 with New-Onset Atrial Fibrillation in Acute Myocardial Infarction. Cardiology, 147, 381-388. https://doi.org/10.1159/000524765 |
[33] | Zhang, Q., He, X., Ling, J., et al. (2022) Association between Circulating Cell-Free DNA Level at Admission and the Risk of Heart Failure Incidence in Acute Myocardial Infarction Patients. DNA and Cell Biology, 41, 742-749.
https://doi.org/10.1089/dna.2022.0238 |
[34] | Vyshnevska, I., Kopytsya, M., Hilоva, Y., et al. (2020) Biomarker Sst2 as an Early Predictor of Acute Renal Injury in Patients with St-Segment Elevation Acute Myocardial Infarction. Georgian Medical News, 302, 53-58. |
[35] | Hou, M., Ren, Y.P., Wang, R. and Lu,, X. (2021) Early Cardiopulmonary Resuscitation on Serum Levels of Myeloperoxidase, Soluble ST2, and Hypersensitive C-Reactive Protein in Acute Myo-cardial Infarction Patients. World Journal of Clinical Cases, 9, 10585-10594. https://doi.org/10.12998/wjcc.v9.i34.10585 |
[36] | Zhang, Y., Zhang, L. and Chen, Z. (2023) Effect of Combining sST2/HDL-C Ratio with Risk Factors of Coronary Heart Disease on the Detection of Angina Pectoris in Chinese: A Retrospective Observational Study. Cardiovascular Diagnosis and Therapy, 13, 345-354. https://doi.org/10.21037/cdt-22-520 |