|
Wnt信号通路在骨质疏松中的作用与治疗前景
|
Abstract:
本文深入研究了骨质疏松症的定义和流行病学特征,并综述了Wnt信号通路在维护骨骼健康方面的重要作用。Wnt信号通路通过促进骨细胞分化、骨基质合成以及抑制骨吸收等机制,对维持骨密度和抗骨质疏松的发展有关键作用。本文还深入探讨了Wnt信号通路与骨质疏松之间的相互关系,以及其在骨质疏松治疗领域中所面临的潜在机会和挑战。最后,本文展望了未来的研究方向,包括个性化治疗策略的开发、药物研发和生物标志物的探索,以加深对骨质疏松症的理解并提高治疗效果。通过深入研究Wnt信号通路,将为预防和治疗骨质疏松症提供崭新的机遇和策略。
This study provides an in-depth examination of the definition and epidemiological characteristics of osteoporosis while comprehensively reviewing the pivotal role of the Wnt signaling pathway in maintaining skeletal health. The Wnt signaling pathway, through mechanisms that include the promotion of osteoblast differentiation, synthesis of bone matrix, and inhibition of bone resorption, plays a crucial role in the preservation of bone density and resistance against osteoporosis. The pa-per further delves into the interrelation between the Wnt signaling pathway and osteoporosis, as well as the potential opportunities and challenges it encounters in the field of osteoporosis treat-ment. Finally, the paper provides an outlook on future research directions, encompassing the de-velopment of personalized treatment strategies, drug development, and the exploration of bi-omarkers, aimed at deepening the understanding of osteoporosis and improving treatment efficacy. Through a profound exploration of the Wnt signaling pathway, this paper opens up new prospects and strategies for the prevention and treatment of osteoporosis.
[1] | 岑海鹏, 宫赫, 李晨晨, 等. 多尺度分析骨质疏松大鼠骨微结构变化[J]. 医用生物力学, 2023, 38(3): 514-520. |
[2] | 章振林, 金小岚, 夏维波. 原发性骨质疏松症诊疗指南(2017版)要点解读[J]. 中华骨质疏松和骨矿盐疾病杂志, 2017, 10(5): 411-412. |
[3] | Cole, Z.A., Dennison, E.M. and Cooper, C. (2008) Osteoporosis Epidemiology Update. Current Rheumatology Reports, 10, 92-96. https://doi.org/10.1007/s11926-008-0017-6 |
[4] | 中国骨质疏松症流行病学调查及“健康骨骼”专项行动结果发布[J]. 中华骨质疏松和骨矿盐疾病杂志, 2019, 12(4): 317-318. |
[5] | Huybrechts, Y., Mortier, G., Boudin, E., et al. (2020) WNT Signaling and Bone: Lessons from Skeletal Dysplasias and Disorders. Frontiers in Endocrinology (Lausanne), 11, Article No. 165. https://doi.org/10.3389/fendo.2020.00165 |
[6] | Ghosh, N., Hossain, U., Mandal, A., et al. (2019) The Wnt Signal-ing Pathway: A Potential Therapeutic Target against Cancer. Annals of the New York Academy of Sciences, 1443, 54-74. https://doi.org/10.1111/nyas.14027 |
[7] | Hayat, R., Manzoor, M. and Hussain, A. (2022) Wnt Signaling Pathway: A Comprehensive Review. Cell Biology International, 46, 863-877. https://doi.org/10.1002/cbin.11797 |
[8] | B?nziger, C., Soldini, D., Schütt, C., et al. (2006) Wntless, a Conserved Membrane Protein Dedicated to the Secretion of Wnt Proteins from Signaling Cells. Cell, 125, 509-522. https://doi.org/10.1016/j.cell.2006.02.049 |
[9] | Finkbeiner, M.G., Sawan, C., Ouzounova, M., et al. (2008) HAT Cofactor TRRAP Mediates Beta-Catenin Ubiquitination on the Chromatin and the Regulation of the Canonical Wnt Pathway. Cell Cycle, 7, 3908-3914.
https://doi.org/10.4161/cc.7.24.7354 |
[10] | Wu, C. and Nusse, R. (2002) Ligand Receptor Interactions in the Wnt Signaling Pathway in Drosophila. Journal of Biological Chemistry, 277, 41762-41769. https://doi.org/10.1074/jbc.M207850200 |
[11] | He, X., Saint-Jeannet, J., Wang, Y., et al. (1997) A Member of the Frizzled Protein Family Mediating Axis Induction by Wnt-5A. Science, 275, 1652-1654. https://doi.org/10.1126/science.275.5306.1652 |
[12] | Krasnow, R.E., Wong, L.L. and Adler, P.N. (1995) Dishev-elled Is a Component of the Frizzled Signaling Pathway in Drosophila. Development (Cambridge), 121, 4095-4102. https://doi.org/10.1242/dev.121.12.4095 |
[13] | Cselenyi, C.S., Jernigan, K.K., Tahinci, E., et al. (2008) LRP6 Transduces a Canonical Wnt Signal Independently of Axin Degradation by Inhibiting GSK3’s Phosphorylation of β-Catenin. Proceedings of the National Academy of Sciences, 105, 8032-80377. https://doi.org/10.1073/pnas.0803025105 |
[14] | Salomon, D., Sacco, P.A., Roy, S.G., et al. (1997) Regulation of β-Catenin Levels and Localization by Overexpression of Plakoglobin and Inhibition of the Ubiquitin-Proteasome System. The Journal of Cell Biology, 139, 1325-1335.
https://doi.org/10.1083/jcb.139.5.1325 |
[15] | Wodarz, A. and Nusse, R. (1998) Mechanisms of Writ Signaling in Development. Annual Review of Cell and Developmental Biology, 14, 59-88. https://doi.org/10.1146/annurev.cellbio.14.1.59 |
[16] | Shimizu, T., Kagawa, T., Inoue, T., et al. (2008) Stabilized β-Catenin Functions through TCF/LEF Proteins and the Notch/RBP-Jκ Complex To Promote Proliferation and Suppress Differentiation of Neural Precursor Cells. Molecular and Cellular Biology, 28, 7427-7441. https://doi.org/10.1128/MCB.01962-07 |
[17] | Vuong, L.T. and Mlodzik, M. (2022) Different Strategies by Distinct Wnt-Signaling Pathways in Activating a Nuclear Transcriptional Response. Current Topics in Developmental Biology, 149, 59-89.
https://doi.org/10.1016/bs.ctdb.2022.02.008 |
[18] | Yang, R.B., Lin, F.F., Yang, J., et al. (2022) Retraction Note: Overexpression of CAV3 Facilitates Bone Formation via the Wnt Signaling Pathway in Osteoporotic Rats. Endocrine, 76, 751. https://doi.org/10.1007/s12020-022-03032-9 |
[19] | Chagay, N.B., Khayt, G.Y., Vdovina, T.M., et al. (2021) Cystic Fibrosis Being a Polyendocrine Disease (Review). Problems of Endocrinology (Mosk), 67, 28-39. https://doi.org/10.14341/probl12694 |
[20] | Liu, J., Xiao, Q., Xiao, J., et al. (2022) Wnt/β-Catenin Signalling: Func-tion, Biological Mechanisms, and Therapeutic Opportunities. Signal Transduction and Targeted Therapy, 7, Article No. 3.
https://doi.org/10.1038/s41392-021-00762-6 |
[21] | Amjadi-Moheb, F. and Akhavan-Niaki, H. (2019) Wnt Signaling Pathway in Osteoporosis: Epigenetic Regulation, Interaction with Other Signaling Pathways, and Therapeutic Promises. Journal of Cellular Physiology, 234, 14641-14650.
https://doi.org/10.1002/jcp.28207 |
[22] | Teufel, S. and Hartmann, C. (2019) Wnt-Signaling in Skeletal Development. Current Topics in Developmental Biology, 133, 235-279. https://doi.org/10.1016/bs.ctdb.2018.11.010 |
[23] | 代光明, 任磊, 陈虹, 等. 下调骨细胞TGF-β/Smad4信号可抑制小鼠BMSCs成骨及破骨分化[J]. 基础医学与临床, 2017, 37(6): 786-791. |
[24] | Zhang, X., Li, H., Chen, F., et al. (2021) Icariin Regulates miR-23a-3p-Mediated Osteogenic Dif-ferentiation of BMSCs via BMP-2/Smad5/Runx2 and WNT/β-Catenin Pathways in Osteonecrosis of the Femoral Head. Saudi Pharmaceutical Journal, 29, 1405-1415. https://doi.org/10.1016/j.jsps.2021.10.009 |
[25] | Visweswaran, M., Pohl, S., Arfuso, F., et al. (2015) Multi-Lineage Differentiation of Mesenchymal Stem Cells—To Wnt, or Not Wnt. The International Journal of Biochemistry & Cell Biology, 68, 139-147.
https://doi.org/10.1016/j.biocel.2015.09.008 |
[26] | Pan, F., Shao, J., Shi, C., et al. (2021) Apigenin Promotes Oste-ogenic Differentiation of Mesenchymal Stem Cells and Accelerates Bone Fracture Healing via Activating Wnt/β-Catenin Signaling. American Journal of Physiology: Endocrinology and Metabolism, 320, E760-E771. https://doi.org/10.1152/ajpendo.00543.2019 |
[27] | Liang, Y., Liu, X., Zhou, R., et al. (2021) Chaetocin Promotes Osteogenic Differentiation via Modulating Wnt/Beta- Catenin Signaling in Mesenchymal Stem Cells. Stem Cells Interna-tional, 2021, Article ID: 8888416.
https://doi.org/10.1155/2021/8888416 |
[28] | Lademann, F., Tsourdi, E., Hofbauer, L.C., et al. (2020) Thyroid Hor-mone Actions and Bone Remodeling—The Role of the Wnt Signaling Pathway. Experimental and Clinical Endocrinolo-gy & Diabetes, 128, 450-454.
https://doi.org/10.1055/a-1088-1215 |
[29] | Zhang, H., Wang, J., Deng, F., et al. (2015) Canonical Wnt Signaling Acts Synergistically on BMP9-Induced Osteo/Odontoblastic Differentiation of Stem Cells of Dental Apical Papilla (SCAPs). Biomaterials, 39, 145-154.
https://doi.org/10.1016/j.biomaterials.2014.11.007 |
[30] | Kamizaki, K., Endo, M., Minami, Y., et al. (2021) Role of Noncanonical Wnt Ligands and Ror-Family Receptor Tyrosine Kinases in the Development, Regeneration, and Diseases of the Musculoskeletal System. Developmental Dynamics, 250, 27-38. https://doi.org/10.1002/dvdy.151 |
[31] | Church, V., Nohno, T., Linker, C., et al. (2002) Wnt Regulation of Chon-drocyte Differentiation. Journal of Cell Science, 115, 4809-4818. https://doi.org/10.1242/jcs.00152 |
[32] | de Winter, T. and Nusse, R. (2021) Running against the Wnt: How Wnt/beta-Catenin Suppresses Adipogenesis. Frontiers in Cell and Developmental Biology, 9, Article ID: 627429. https://doi.org/10.3389/fcell.2021.627429 |
[33] | Liang, K., Du, Y., Chen, L., et al. (2020) Contrary Roles of Wnt/beta-Catenin Signaling in BMP9-Induced Osteogenic and Adipogenic Differentiation of 3T3-L1 Preadipocytes. Cell Biochemistry and Biophysics, 78, 347-356.
https://doi.org/10.1007/s12013-020-00935-0 |
[34] | Li, Y., Wu, B., Liang, J., et al. (2019) Isopsoralen Ameliorates H2O2-Induced Damage in Osteoblasts via Activating the Wnt/β-Catenin Pathway. Experimental and Therapeutic Medi-cine, 18, 1899-1906.
https://doi.org/10.3892/etm.2019.7741 |
[35] | Joeng, K.S., Lee, Y.C., Lim, J., et al. (2017) Osteocyte-Specific WNT1 Regulates Osteoblast Function during Bone Homeostasis. Journal of Clinical Investigation, 127, 2678-2688. https://doi.org/10.1172/JCI92617 |
[36] | Yang, Z., Liu, J., Fu, J., et al. (2022) Associations between WNT Signaling Pathway-Related Gene Polymorphisms and Risks of Osteoporosis Development in Chinese Postmenopausal Women: A Case-Control Study. Climacteric, 25, 257-263. https://doi.org/10.1080/13697137.2021.1941848 |