|
PPY/RGO/CoNd-LDH超级电容器电极材料的制备与电化学性能
|
Abstract:
利用rGO、PPY和CoNd-LDH三种材料,采取原位聚合法,制备PPY、PPY/rGO、PPY/CoNd-LDH、PPY/rGO/CoNd-LDH等新型复合材料。借助扫描电镜、X射线衍射分析、红外光谱和电化学分析等表征测试手段,分析材料的形貌、微观结构和电学性能。结果表明三元复合物电流密度1 A/g时的比电容达到594 F/g,相比纯PPY比电容提升184.2%,相比PPY/RGO,PPY/CoNd-LDH二元复合碳材料比电容提升74.7%和28%,并具有良好的循环稳定性。结果表明,PPY/RGO/CoNd-LDH复合材料是很有前途的超级电容器电极材料。
Three materials, rGO, PPY and CoNd-LDH, were used to prepare new composites such as PPY, PPY/rGO, PPY/CoNd-LDH and PPY/rGO/CoNd-LDH by in situ polymerization method. The morphology, microstructure and electrical properties of the materials were analyzed by means of characterization tests such as scanning electron microscopy, X-ray diffraction analysis, infrared spectroscopy and electrochemical analysis. The results show that the specific capacitance of the ternary complexes reaches 594 F/g at a current density of 1 A/g, which is 184.2% higher than that of pure PPY, 74.7% higher than that of PPY/RGO, and 28% higher than that of PPY/CoNd-LDH binary composite carbon materials, and has good cycling stability. The results indicate that PPY/ RGO/CoNd-LDH composites are promising electrode materials for supercapacitors.
[1] | Wang, G., Zhang, L. and Zhang, J. (2012) A Review of Electrode Materials for Electrochemical Supercapacitors. Chemical Society Reviews, 41, 797-828. https://doi.org/10.1039/C1CS15060J |
[2] | Scibioh, M.A. and Viswanathan, B. (2020) Supercapacitor: An Introduction. In: Scibioh, M.A. and Viswanathan, B., Eds., Materials for Supercapacitor Applications, Elsevier, Amsterdam, 1-13.
https://doi.org/10.1016/B978-0-12-819858-2.00001-9 |
[3] | Li, K.S., Lu, X.Y., Zhang, Y., Liu, K.L., Huang, Y.C. and Liu, H. (2020) Bi3TaO7/Ti3C2 Heterojunctions for Enhanced Photocatalytic Removal of Water-Borne Contaminants. Environmental Research, 185, Article ID: 109409.
https://doi.org/10.1016/j.envres.2020.109409 |
[4] | Kim, E., Kim, S., Choi, Y.M., et al. (2020) Ultrathin Hem-atite on Mesoporous WO3 from Atomic Layer Deposition for Minimal Charge Recombination. ACS Sustainable Chemistry & Engineering, 8, 11358-11367.
https://doi.org/10.1021/acssuschemeng.0c03579 |
[5] | González, A., Goikolea, E., Barrena, J.A. and Mysyk, R. (2016) Review on Supercapacitors: Technologies and Materials. Renewable and Sustainable Energy Reviews, 58, 1189-1206. https://doi.org/10.1016/j.rser.2015.12.249 |
[6] | Najib, S. and Erdem, E. (2019) Current Progress Achieved in Novel Materials for Supercapacitor Electrodes: Mini Review. Nanoscale Advances, 1, 2817-2827. https://doi.org/10.1039/C9NA00345B |
[7] | Xin, L. and Wei, B. (2012) Supercapacitors Based on Nanostruc-tured Carbon. Nano Energy, 2, 159-173.
https://doi.org/10.1016/j.nanoen.2012.09.008 |
[8] | Huang, Y., Yang, H., Xiong, T., et al. (2019) Adsorption Energy Engineering of Nickel Oxide Hybrid Nanosheets for High Areal Capacity Flexible Lithium-Ion Batteries. Energy Storage Materials, 25, 41-51.
https://doi.org/10.1016/j.ensm.2019.11.001 |
[9] | Xiong, T., Su, H., Yang, F., et al. (2020) Harmonizing Self-Supportive VN/MoS2 Pseudocapacitance Core-Shell Electrodes for Boosting the Areal Capacity of Lithium Storage. Materials Today Energy, 17, Article ID: 100461.
https://doi.org/10.1016/j.mtener.2020.100461 |
[10] | Dai, J., Fu, K., Palanisamy, R., et al. (2017) A Solid State Energy Storage Device with Supercapacitor—Battery Hybrid Design. Journal of Materials Chemistry A, 5, 15266-15272. https://doi.org/10.1039/C7TA02638B |
[11] | Dubal, D.P., Ayyad, O., Ruiz, V. and Gómez-Romero, P. (2015) Hybrid Energy Storage: The Merging of Battery and Supercapacitor Chemistries. Chemical Society Reviews, 44, 1777-1790. https://doi.org/10.1039/C4CS00266K |
[12] | Beguin, F., Presser, V. and Balducci, A. (2014) Carbons and Electrolytes for Advanced Supercapacitors. Advanced Materials, 26, 2219-2251. https://doi.org/10.1002/adma.201304137 |
[13] | Choudhary, N., Li, C., Moore, J., et al. (2017) Asymmetric Supercapacitor Electrodes and Devices. Advanced Materials, 29, Article ID: 1605336. https://doi.org/10.1002/adma.201605336 |
[14] | Borenstein, A., Hanna, O., Ran, A., et al. (2017) Carbon-Based Composite Materials for Supercapacitor Electrodes: A Review. Journal of Materials Chemistry A, 5, 12653-12672. https://doi.org/10.1039/C7TA00863E |
[15] | Wang, Q.F., Ma, Y., Liang, X., Zhang, D.H. and Miao, M.H. (2018) Novel Core/Shell CoSe2 @PPY Nanoflowers for High Performance Fiber Asymmetric Supercapacitors. Journal of Materials Chemistry A, 6, 10361-10369.
https://doi.org/10.1039/C8TA02056F |
[16] | Sharma, P. and Kumar, V. (2020) Current Technology of Super-capacitors: A Review. Journal of Electronic Materials, 49, 3520-3532. https://doi.org/10.1007/s11664-020-07992-4 |
[17] | 李雪芹, 常琳, 赵慎龙, 等. 基于碳材料的超级电容器电极材料的研究[J]. 物理化学学报, 2017, 33(1): 130-148. |
[18] | Winter, M. and Brodd, R.J. (2004) What Are Bat-teries, Fuel Cells, and Supercapacitors. Chemical Reviews, 104, 4245-4270. https://doi.org/10.1021/cr020730k |
[19] | 孙光林. 含氮碳及碳基@纳米金属化合物超级电容器材料的制备与应用研究[D]: [博士学位论文]. 武汉: 武汉大学, 2017. |
[20] | Schoetz, T., Kurniawan, M., Stich, M., et al. (2018) Understanding the Charge Storage Mechanism of Conductive Polymers as Hybrid Battery-Capacitor Materials in Ionic Liquids by in situ Atomic Force Microscopy and Electrochemical Quartz Crystal Microbalance Studies. Journal of Materials Chemistry A, 6, 17787-17799.
https://doi.org/10.1039/C8TA06757K |
[21] | Dong, L., Yang, W., Yang, W., et al. (2019) Multivalent Metal Ion Hybrid Capacitors: A Review with a Focus on Zinc-Ion Hybrid Capacitors. Journal of Materials Chemistry A, 7, 13810-13832. https://doi.org/10.1039/C9TA02678A |
[22] | Xu, X., Ray, R., Gu, Y., et al. (2004) Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. Journal of the American Chemical Society, 126, 12736-12737. https://doi.org/10.1021/ja040082h |
[23] | Molaei, M.J. (2020) The Optical Properties and Solar Energy Conversion Applications of Carbon Quantum Dots: A Review. Solar Energy, 196, 549-566. https://doi.org/10.1016/j.solener.2019.12.036 |
[24] | Janus, ?., Radwan-Prag?owska, J., Pi?tkowski, M. and Bogda?, D. (2020) Facile Synthesis of Surface-Modified Carbon Quantum Dots (CQDs) for Biosensing and Bioimaging. Materials, 13, Article 3313.
https://doi.org/10.3390/ma13153313 |
[25] | 王信, 黄润青, 牛树章, 等. 石墨烯基材料在高性能锂金属电池中的研究进展[J]. 新型炭材料, 2021, 36(4): 711-728. |
[26] | Lee, C., Wei, X., Kysar, J.W. and Hone, J. (2008) Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 321, 385-388. https://doi.org/10.1126/science.1157996 |
[27] | Huang, J., Zhao, X., Huang, H., et al. (2019) Scalable Production of Few Layered Graphene by Soft Ball-Microsphere Rolling Transfer. Carbon, 154, 402-409. https://doi.org/10.1016/j.carbon.2019.08.026 |
[28] | Jaafar, E., Kashif, M., Sahari, S.K. and Ngaini, Z. (2018) Study on Morphological, Optical and Electrical Properties of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO). Materials Science Forum, 917, 112-116.
https://doi.org/10.4028/www.scientific.net/MSF.917.112 |
[29] | Wang, Y., Yang, W. and Yang, J. (2007) A Co-Al Layered Double Hydroxides Nanosheets Thin-Film Electrode: Fabrication and Electrochemical Study. Elec-trochemical and Solid State Letters, 10, A233-A236.
https://doi.org/10.1149/1.2768166 |
[30] | Wang, Y., Hu, X., Li, W., et al. (2020) Preparation of Boron Nitrogen Co-Doped Carbon Quantum Dots for Rapid Detection of Cr(VI). Spectrochimica Acta Part A: Molecular and Bi-omolecular Spectroscopy, 243, Article ID: 118807.
https://doi.org/10.1016/j.saa.2020.118807 |
[31] | Wang, Y., Zhuang, Q.F. and Ni, Y.N. (2015) Facile Micro-wave-Assisted Solid-Phase Synthesis of Highly Fluorescent Nitrogen-Sulfur-Codoped Carbon Quantum Dots for Cellular Imaging Applications. Chemistry—A European Journal, 21, 13004-13011. https://doi.org/10.1002/chem.201501723 |
[32] | Sahu, S., Behera, B., Maiti, T.K. and Mohapatra, S. (2012) Simple One-Step Synthesis of Highly Luminescent Carbon Dots from Orange Juice: Application as Excellent Bio-Imaging Agents. Chemical Communications, 48, 8835-8837.
https://doi.org/10.1039/c2cc33796g |
[33] | Mehta, V.N., Jha, S. and Kailasa, S.K. (2014) One-Pot Green Syn-thesis of Carbon Dots by Using Saccharum officinarum Juice for Fluorescent Imaging of Bacteria (Escherichia coli) and Yeast (Saccharomyces cerevisiae) Cells. Materials Science & Engineering: C, 38, 20-27. https://doi.org/10.1016/j.msec.2014.01.038 |
[34] | Zhang, Z., Hao, J., Zhang, J., Zhang, B.L. and Tang, J.L. (2012) Protein as the Source for Synthesizing Fluorescent Carbon Dots by a One-Pot Hydrothermal Route. RSC Advances, 2, 8599-8601. https://doi.org/10.1039/c2ra21217j |
[35] | Tang, Q., Zhu, W., He, B. and Yang, P.Z. (2017) Rapid Conversion from Carbohydrates to Large-Scale Carbon Quantum Dots for All-Weather Solar Cells. ACS Nano, 11, 1540-1547. https://doi.org/10.1021/acsnano.6b06867 |
[36] | Fan, G., Wang, H., Xiang, X. and Li, F. (2013) Co-Al Mixed Metal Oxides/Carbon Nanotubes Nanocomposite Prepared via a Precursor Route and En-hanced Catalytic Property. Journal of Solid State Chemistry, 197, 14-22.
https://doi.org/10.1016/j.jssc.2012.08.016 |
[37] | Ansaldo, A., Bondavalli, P., Bellani, S., et al. (2017) High-Power Graphene—Carbon Nanotube Hybrid Supercapacitors. ChemNanoMat, 3, 436-446. https://doi.org/10.1002/cnma.201700093 |
[38] | 覃奇贤, 刘淑兰. 电极的极化和极化曲线(I)——电极的极化[J]. 电镀与精饰, 2008, 30(6): 28-30. |
[39] | Hosseini, M.G. and Shahryari, E. (2016) Synthesis, Characterization and Electrochemical Study of Graphene Oxide-Multi Walled Carbon Nanotube-Manganese Oxide-Polyaniline Electrode as Supercapacitor. Journal of Materials Science & Technology, 32, 763-773. https://doi.org/10.1016/j.jmst.2016.05.008 |
[40] | 王文聪. 层状双金属氢氧化物超级电容器电极材料的制备和电化学性能研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2019. |
[41] | Ajami, N. (2020) PANOA/MnO2/MWCNT Nanocomposite: Synthesis, Characterization, and Electrochemical Performance as Efficient Electrode Materials for Supercapacitors. Journal of Macromolecular Science, Part A, 57, 1-8.
https://doi.org/10.1080/10601325.2018.1559697 |