|
Applied Physics 2023
一种新生儿先心病筛查仪器的设计
|
Abstract:
先天性心脏病是我国最常见的先天性缺陷。为了尽早筛查诊断和治疗,以降低新生儿死亡率,本文设计了一款多功能的专用于新生儿先心病的筛查仪器。该仪器集信号采集、通信、处理和分析为一体,包括四组高性能的电子听诊器、三导联心电、血氧传感器和FPGA嵌入式系统等。它能够同步采集四个主要听诊区的心音,并结合心电信号进行心音分割。采用MFCC提取心音信号特征,最终通过卷积神经网络进行分类识别。实验结果表明,本文设计的仪器准确率为达96.7%,对异常心音具有较高的识别率,可以辅助医护人员进行先心病筛查工作。
Congenital heart disease is the most common congenital defect in China. In order to screen, diagnose, and treat it as early as possible to reduce neonatal mortality, a multifunctional screening device specifically designed for newborns with congenital heart disease is designed in this study. This instrument integrates signal acquisition, communication, processing, and analysis, includ-ing four groups of high-performance electronic stethoscopes, a three-lead electrocardiogram, a blood oxygen sensor, and an FPGA embedded system. It can synchronously collect heart sounds from four major auscultation areas and combine them with electrocardiographic signals for heart sound segmentation. The MFCC technique is employed to extract features from heart sound signals, and the classification and recognition are conducted through a convolutional neural network. The experimental results show that the accuracy of the instrument designed in this paper is 96.7%, which has a high recognition rate for abnormal heart sounds and can assist medical staff in the screening of congenital heart disease.
[1] | 苏翠敏, 刘芳意, 蔡红珠, 等. 新生儿先天性心脏病患病调查分析[J]. 中国妇幼健康研究, 2020, 31(4): 533-536. |
[2] | 汪际英, 王晓, 王彬, 等. 银川地区18639例新生儿先天性心脏病筛查结果分析[J]. 宁夏医学杂志, 2021, 43(11): 1003-1005. |
[3] | 潘飞霞, 徐玮泽, 李嘉斌, 等. 中国先天性心脏病疾病负担三十年变化分析[J]. 浙江大学学报(医学版), 2022, 51(3): 267-277. |
[4] | 苏翠敏, 林利平, 蔡红珠, 等. 心脏杂音和POX在先心病筛查中的作用[J]. 中国医学创新, 2019, 16(30): 147-150. |
[5] | 刘倩, 徐彦, 梁春燕, 等. 基于CEEMDAN和小波熵的心音信号去噪算法研究[J]. 计算机仿真, 2023, 40(2): 321-325, 419. |
[6] | 周克良, 刘亚亚. 新阈值小波变换的心音去噪[J]. 计算机工程与设计, 2020, 41(9): 2476-2481. |
[7] | Thalmayer, A., Zeising, S., Fischer, G. and Kirchner, J. (2020) A Robust and Real-Time Capable Envelope-Based Algorithm for Heart Sound Classification: Validation under Different Physiological Conditions. Sensors (Basel), 20, Article No. 972. https://doi.org/10.3390/s20040972 |
[8] | 许春冬, 周静, 应冬文, 等. 基于DHMM的低心率变异性心音的分割方法[J]. 数据采集与处理, 2019, 34(4): 605-614. |
[9] | 陈娟. 心音信号的MFCC特征参数提取方法[J]. 岳阳职业技术学院学报, 2021, 36(4): 75-78, 82. |
[10] | 于乾坤. 基于混合神经网络的心音分类识别算法研究[D]: [硕士学位论文]. 天津: 天津工业大学, 2020. |
[11] | 单煦. 多通道心音的研究与应用[D]: [硕士学位论文]. 南京: 南京邮电大学, 2020. |
[12] | 芦夜召, 郭珈, 张利平, 等. 多导联心电心音同步智能听诊器设计[J]. 电子器件, 2021, 44(1): 188-191. |
[13] | Huai, X., Panote, S., Choi, D., et al. (2020) Heart Sound Recognition Technology Based on Deep Learning. 11th International Conference, DHM 2020, Copenhagen, 19-24 July 2020, 491-500.
https://doi.org/10.1007/978-3-030-49904-4_36 |
[14] | 成谢锋, 张友迅. 一种先心病快速筛选仪的设计与实现[J]. 计算机技术与发展, 2020, 30(2): 148-152. |
[15] | 白鹏飞, 刘强, 段飞波, 等. 基于MAX30102的穿戴式血氧饱和度检测系统[J]. 激光与红外, 2017, 47(10): 1276-1280. |
[16] | 黄政钦, 孙静, 张丽娜, 等. 心音、心电采集系统设计与信号预处理[J]. 电子测量技术, 2014, 37(9): 117-121, 131. |
[17] | 覃爱娜, 戴亮, 李飞, 等. 基于改进小波阈值函数的语音增强算法研究[J]. 湖南大学学报(自然科学版), 2015, 42(4): 136-140. |
[18] | 韩威. 小样本心音分类方法研究[D]: [博士学位论文]. 广州: 广东工业大学, 2020. |
[19] | 李锋, 陈美丽. 一种基于几何特征的ECG波形识别算法[J]. 北京生物医学工程, 2015(3): 261-266.
https://doi.org/10.3969/j.issn.1002-3208.2015.03.08 |
[20] | 陈成, 潘家华, 孙静, 等. 基于MFCC与GFCC混合特征的先心病心音分类研究[J]. 计算机仿真, 2022, 39(7): 263-269. |