|
miR-126在调控糖尿病视网膜病变中的研究进展
|
Abstract:
糖尿病视网膜病变(DR)是常见的糖尿病并发症,而目前对于DR的治疗中,微小RNA作为在糖尿病视网膜病变的近年热点,microRNA在调控和表达细胞因子上起重要作用,有望成为治疗DR的突破口。MicroRNA-126 (miR-126)在癌症发展,心脏、肾脏及眼中表达均有重要意义。miR-126在眼科中的表达,尤其在视网膜上皮中特异表达,通过多种细胞因子调控内皮细胞增殖,并维持血视网膜屏障,对于糖尿病视网膜病变的过程中的分化、增殖和代谢方面有密切关系。本文通过对miR-126研究现状的实验方法、作用机制展开讨论和总结,旨在思考miR-126是否可为治疗DR提供新思路。
Diabetic retinopathy (DR) is a common complication of diabetes, where microRNA is a hotspot for the treatment in recent years, which plays a significant role in the regulation and expression of cy-tokines, with expectation to become a breakthrough in the treatment of DR. The expression of mi-croRNA-126 (miR-126) is crucial in the development of cancer, heart, kidney and eyes. In Ophthal-mology, especially in retinal epithelium, the expression of miR-126 is regulated by a variety of cyto-kines, manipulating endothelial cell proliferation and maintain blood retinal barrier that is closely related to the diabetic retinopathy process of differentiation, proliferation and metabolism in. In this paper, the experimental methods as well as mechanism of miR-126 research are summarized and discussed, aiming to determine whether miR-126 can provide new approaches for the treat-ment of DR.
[1] | Korhonen, A., Gucciardo, E., Lehti, K. and Loukovaara, S. (2021) Proliferative Diabetic Retinopathy Transcriptomes Reveal Angiogenesis, Anti-Angiogenic Therapy Escape Mechanisms, Fibrosis and Lymphatic Involvement. Scientific Reports, 11, Article No. 18810. https://doi.org/10.1038/s41598-021-97970-5 |
[2] | 张运涛. 糖尿病微血管并发症及其相关分子机制的研究[J]. 医学信息, 2021, 34(19): 44-46.
https://doi.org/10.3969/j.issn.1006-1959.2021.19.011 |
[3] | 何媛, 周涛, 苏婷, 李海涛, 张海林. 糖尿病视网膜病变的分类、发生机制及治疗进展[J]. 山东医药, 2020, 60(19): 111-115. https://doi.org/10.3969/j.issn.1002-266X.2020.19.030 |
[4] | 陈向武, 袁非. 糖尿病视网膜病变的新生血管生长方式及细胞成分的研究进展[J]. 国际眼科纵览, 2009, 33(5): 344-347. http://qikan.cqvip.com/Qikan/Article/Detail?id=32086412 |
[5] | Hadj-Moussa, H., Hawkins, L.J. and Storey, K.B. (2022) Role of MicroRNAs in Extreme Animal Survival Strategies. Methods in Molecular Biology, 2257, 311-334. https://doi.org/10.1007/978-1-0716-1170-8_16 |
[6] | 李瑞, 李万明, 陈小丽. 微小RNA-126和血管内皮生长因子在增殖性糖尿病视网膜病变患者视网膜前膜中的表达及意义[J]. 实用临床医药杂志, 2022, 26(2): 1-5, 10. |
[7] | Hu, J.Y., Zhu, M.L., Li, D., Wu, Q. and Le, Y.Z. (2021) VEGF as a Direct Functional Regulator of Photore-ceptors and Contributing Factor to Diabetes-Induced Alteration of Photoreceptor Function. Biomolecules, 11, Article 988.
https://doi.org/10.3390/biom11070988 |
[8] | Akbari Kordkheyli, V., Amir Mishan, M., Khonakdar Tarsi, A., et al. (2021) MicroRNAs May Provide New Strategies in the Treatment and Diagnosis of Diabetic Retinopathy: Importance of VEGF. Iranian Journal of Basic Medical Sciences, 24, 267-279. |
[9] | Wang, Y.Q., Sun, J. and Kahaleh, B. (2021) Epi-genetic Down-Regulation of microRNA-126 in Scleroderma Endothelial Cells Is Associated with Impaired Responses to VEGF and Defective Angiogenesis. Journal of Cellular and Molecular Medicine, 25, 7078-7088. https://doi.org/10.1111/jcmm.16727 |
[10] | Lagos-Quintana, M., Rauhut, R., Yalcin, A., et al. (2002) Identification of Tissue-Specific MicroRNAs from Mouse. Current Biology, 12, 735-739. https://doi.org/10.1016/S0960-9822(02)00809-6 |
[11] | Garzon, R., Pichiorri, F., Palumbo, T., et al. (2006) Mi-croRNA Fingerprints during Human Megakaryocytopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 5078-5083
https://royalsociety.org/journals/ https://doi.org/10.1073/pnas.0600587103 |
[12] | Zhang, J., Du, Y.Y., Lin, Y.F., et al. (2008) The Cell Growth Sup-pressor, Mir-126, Targets IRS-1. Biochemical and Biophysical Research Communications, 377, 136-140. https://doi.org/10.1016/j.bbrc.2008.09.089 |
[13] | Li, X.M., Wang, A.M., Zhang, J., et al. (2011) Down-Regulation of miR-126 Expression in Colorectal Cancer and Its Clinical Significance. Medical Oncology, 28, 1054-1057. https://doi.org/10.1007/s12032-010-9637-6 |
[14] | 王艳新, 叶富跃, 王艳. miR-126表达水平及其基因启动子甲基化状态与胶质母细胞瘤术后复发的关系[J]. 中国临床神经外科杂志, 2021, 26(9): 682-686. |
[15] | 刘洋, 梁红艳, 姜晓峰. miR-126检测对早期糖尿病肾病诊断的意义[C]//中国生物化学与分子生物学会医学生物化学与分子生物学分会, 中国生物化学与分子生物学会临床应用生物化学与分子生物学分会. 第七届全国医学生物化学与分子生物学和第四届全国临床应用生物化学与分子生物学联合学术研讨会暨医学生化分会会员代表大会论文集. 哈尔滨医科大学附属第四医院检验科, 2011: 1.
http://cpfd.cnki.com.cn/Article/CPFDTOTAL-IGSS201108003123.htm |
[16] | Zhou, Q.B., Anderson, C., Hanus, J., et al. (2016) Strand and Cell Type-Specific Function of microRNA-126 in Angiogenesis. Molecular Therapy, 24, 1823-1835. https://doi.org/10.1038/mt.2016.108 |
[17] | Bucolo, C., Barbieri, A., Viganò, I., et al. (2021) Short-and Long-Term Expression of Vegf: A Temporal Regulation of a Key Factor in Diabetic Retinopathy. Frontiers in Pharmacology, 12, Article 707909.
https://doi.org/10.3389/fphar.2021.707909 |
[18] | Liu, R., Liu, C.M., Cui, L.L., Zhou, L., Li, N. and Wei, X.D. (2019) Expression and Significance of MiR-126 and VEGF in Proliferative Diabetic Retinopathy. European Review for Medical and Pharmacological Sciences, 23, 6387-6393. |
[19] | 李骞, 张娜, 徐天瑞, 等. 胰岛素受体底物蛋白家族的结构与功能研究进展[J]. 生理科学进展, 2021, 52(1): 65-71.
http://qikan.cqvip.com/Qikan/Article/Detail?id=7104004051 |
[20] | Fang, S.F., Ma, X., Guo, S.P. and Lu, J.M. (2017) MicroRNA-126 Inhibits Cell Viability and Invasion in a Diabetic Retinopathy Model via Targeting IRS-1. On-cology Letters, 14, 4311-4318. https://doi.org/10.3892/ol.2017.6695 |
[21] | 沈雨, 吴苗琴. Th1、Th2和Th17型细胞因子水平与糖尿病视网膜病变的相关性研究进展[J]. 眼科新进展, 2020, 40(2): 192-196. https://doi.org/10.13389/j.cnki.rao.2020.0046 |
[22] | 卞征. 白介素和糖尿病视网膜病变的关系[D]: [博士学位论文]. 南京: 南京医科大学, 2017.
http://cdmd.cnki.com.cn/Article/CDMD-10312-1017176617.htm |
[23] | Chen, X.J., Yu, X.Q., Li, X.X., Li, L., Li, F., Guo, T., Guan, C.H., Miao, L.P. and Cao, G.P. (2020) MiR-126 Targets IL-17A to Enhance Proliferation and Inhibit Apoptosis in High-Glucose-Induced Human Retinal Endothelial Cells. Biochemistry and Cell Biology, 98, 277-283. https://doi.org/10.1139/bcb-2019-0174 |
[24] | Martin, C.A., Ahmad, I., Klingseisen, A., et al. (2014) Mutations in PLK4, Encoding a Master Regulator of Centriole Biogenesis, Cause Microcephaly, Growth Failure and Retinopathy. Nature Genetics, 46, 1283-1292.
https://doi.org/10.1038/ng.3122 |
[25] | Bao, J., Yu, Y., Chen, J., et al. (2018) MiR-126 Negatively Regulates PLK-4 to Impact the Development of Hepatocellular Carcinoma via ATR/CHEK1 Pathway. Cell Death & Disease, 9, Article No. 1045.
https://doi.org/10.1038/s41419-018-1020-0 |
[26] | Kowluru, R.A., Santos, J.M. and Zhong, Q. (2014) Sirt1, a Nega-tive Regulator of Matrix Metalloproteinase-9 in Diabetic Retinopathy. Investigative Ophthalmology & Visual Science, 55, 5653-5660.
https://doi.org/10.1167/iovs.14-14383 |
[27] | 焦战, 陈青, 张于, 等. 血清基质金属蛋白酶9蛋白水平与糖尿病视网膜病变关系的研究[J]. 中国糖尿病杂志, 2018, 26(6): 484-487. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTL201806010.htm |
[28] | Shahulhameed, S., Vishwakarma, S., Chhablani, J., et al. (2020) A Systematic Investigation on Complement Pathway Activation in Diabetic Retinopathy. Frontiers in Immunology, 11, Article 154.
https://doi.org/10.3389/fimmu.2020.00154 |
[29] | Ye, P., Liu, J., He, F., Xu, W. and Yao, K. (2014) Hypox-ia-Induced Deregulation of miR-126 and Its Regulative Effect on VEGF and MMP-9 Expression. International Journal of Medical Sciences, 11, 17-23.
https://doi.org/10.7150/ijms.7329 |
[30] | 马淑慧, 徐进. 急性心肌梗死患者外周血miR-126-5p表达与心肌损伤的相关性[J]. 实验与检验医学, 2020, 38(2): 253-256, 285. https://doi.org/10.3969/j.issn.1674-1129.2020.02.014 |
[31] | Villain, G., Poissonnier, L., Noueihed, B., et al. (2018) miR-126-5p Promotes Retinal Endothelial Cell Survival through SetD5 Regulation in Neurons. Development, 145, dev156232. |
[32] | Rudraraju, M., Narayanan, S.P. and Somanath, P.R. (2020) Regulation of Blood-Retinal Barrier Cell-Junctions in Diabetic Retinopathy. Pharmacological Research, 161, Article ID: 105115. https://doi.org/10.1016/j.phrs.2020.105115 |
[33] | Wang, T., Tian, J. and Jin, Y. (2021) VCAM1 Expression in the Myocardium Is Associated with the Risk of Heart Failure and Immune Cell Infiltration in Myocardium. Scientific Reports, 11, Article No. 19488.
https://doi.org/10.1038/s41598-021-98998-3 |
[34] | Olson, J.A., Whitelaw, C.M., McHardy, K.C., Pearson, D.W.M. and Forrester, J.V. (1997) Soluble Leucocyte Adhesion Molecules in Diabetic Retinopathy Stimulate Retinal Capillary Endothelial Cell Migration. Diabetologia, 40, 1166-1171.
https://pubmed.ncbi.nlm.nih.gov/9349597/ https://doi.org/10.1007/s001250050802 |
[35] | Zhang, Y.Y., Xiong, G.Y. and Xie, X.X. (2021) MicroRNA-222 Al-leviates Radiation-Induced Apoptosis by Targeting BCL2L11 in Cochlea Hair Cells. Bioscience Reports, 41, BSR20201397. https://doi.org/10.1042/BSR20201397 |
[36] | Bai, X., Luo, J., Zhang, X., et al. (2017) Mi-croRNA-126 Reduces Blood-Retina Barrier Breakdown via the Regulation of VCAM-1 and BCL2L11 in Ischemic Ret-inopathy. Ophthalmic Research, 57, 173-185.
https://doi.org/10.1159/000454716 |
[37] | Heyn, G.S., Corrêa, L.H. and Magalh?es, K.G. (2020) The Impact of Ad-ipose Tissue-Derived miRNAs in Metabolic Syndrome, Obesity, and Cancer. Frontiers in Endocrinology, 11, Article 563816. |