全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

化疗相关心脏毒性的研究进展
Advances in Chemotherapy-Related Cardiotoxicity

DOI: 10.12677/ACM.2023.13112498, PP. 17815-17821

Keywords: 化疗,心脏毒性,研究进展
Chemotherapy
, Cardiotoxicity, Research Progress

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着医学的发展,化疗在恶性肿瘤治疗中得以广泛运用,并被公认为是恶性肿瘤治疗中效果显著的手段。随之出现的抗肿瘤治疗相关并发症成为了医患共同的关注点。化疗药物最显著的并发症是心脏毒性,它会导致射血分数降低、心律失常、高血压和心肌梗死,这些都会对生活质量和患者预后产生重大影响。本文综述了与各类抗癌药物相关的心脏毒性,进一步研究抗癌药物心脏毒性的可能机制,为早期识别化疗相关心脏毒性和管理指南提供有价值的见解。
With the development of medicine, chemotherapy has been widely used in the treatment of nausea tumors, and has been recognized as an effective means in the treatment of malignant tumors. The subsequent complications related to antitumor therapy have become a common concern of doctors and patients. The most significant complication of chemotherapeutic drugs is cardiotoxicity, which can lead to decreased ejection fraction, arrhythmia, hypertension, and myocardial infarction, all of which can have a significant impact on quality of life and patient outcomes. This article reviews the cardiotoxicity associated with various anticancer drugs, and further studies the possible mecha-nisms of cardiotoxicity of anticancer drugs, providing valuable insights for early identification of chemotherapy-related cardiotoxicity and management guidelines.

References

[1]  Bhagat, A. and Kleinerman, E.S. (2020) Anthracycline-Induced Cardiotoxicity: Causes, Mechanisms, and Prevention. Advances in Experimental Medicine and Biology, 1257, 181-192.
https://doi.org/10.1007/978-3-030-43032-0_15
[2]  Radulescu, L.M., Radulescu, D., Ciuleanu, T.E., et al. (2021) Cardiotoxicity Associated with Chemotherapy Used in Gastrointestinal Tumours. Medicina, 57, Article 806.
https://doi.org/10.3390/medicina57080806
[3]  Bansal, N., Amdani, S., Lipshultz, E.R., et al. (2017) Chemothera-py-Induced Cardiotoxicity in Children. Expert Opinion on Drug Metabolism & Toxicology, 13, 817-832.
https://doi.org/10.1080/17425255.2017.1351547
[4]  Ray, P.D., Huang, B.W. and Tsuji, Y. (2012) Reactive Ox-ygen Species (ROS) Homeostasis and Redox Regulation in Cellular Signaling. Cellular Signalling, 24, 981-990.
https://doi.org/10.1016/j.cellsig.2012.01.008
[5]  Jakubczyk, K., Dec, K., Ka?duńska, J., et al. (2020) Reactive Oxygen Species—Sources, Functions, Oxidative Damage. Polski Merkuriusz Lekarski, 48, 124-127.
[6]  Sies, H. and Jones, D.P. (2020) Reactive Oxygen Species (ROS) as Pleiotropic Physiological Signalling Agents. Nature Reviews Molecular Cell Biology, 21, 363-383.
https://doi.org/10.1038/s41580-020-0230-3
[7]  Zorov, D.B., Juhaszova, M. and Sollott, S.J. (2014) Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiological Reviews, 94, 909-950.
https://doi.org/10.1152/physrev.00026.2013
[8]  Angsutararux, P., Luanpitpong, S. and Is-saragrisil, S. (2015) Chemotherapy-Induced Cardiotoxicity: Overview of the Roles of Oxidative Stress. Oxidative Medi-cine and Cellular Longevity, 2015, Article ID: 795602.
https://doi.org/10.1155/2015/795602
[9]  Incalza, M.A., D’oria, R., Natalicchio, A., et al. (2018) Oxidative Stress and Reactive Oxygen Species in Endothelial Dysfunction Associated with Cardiovascular and Metabolic Diseases. Vascular Pharmacology, 100, 1-19.
https://doi.org/10.1016/j.vph.2017.05.005
[10]  Ambrosio, G., Zweier, J.L., Duilio, C., et al. (1993) Evidence That Mitochondrial Respiration Is a Source of Potentially Toxic Oxygen Free Radicals in Intact Rabbit Hearts Subjected to Is-chemia and Reflow. Journal of Biological Chemistry, 268, 18532-18541.
https://doi.org/10.1016/S0021-9258(17)46660-9
[11]  Paradies, G., Paradies, V., Ruggiero, F.M., et al. (2014) Oxidative Stress, Cardiolipin and Mitochondrial Dysfunction in Nonalcoholic Fatty Liver Disease. World Journal of Gastroenterology, 20, 14205-14218.
https://doi.org/10.3748/wjg.v20.i39.14205
[12]  Medzhitov, R. (2010) Inflammation 2010: New Adventures of an Old Flame. Cell, 140, 771-776.
https://doi.org/10.1016/j.cell.2010.03.006
[13]  Lazzerini, P.E., Capecchi, P.L. and Laghi-Pasini, F. (2015) Long QT Syndrome: An Emerging Role for Inflammation and Immunity. Frontiers in Cardiovascular Medicine, 2, Article 26.
https://doi.org/10.3389/fcvm.2015.00026
[14]  Lazzerini, P.E., Laghi-Pasini, F., Boutjdir, M., et al. (2019) Cardio-immunology of Arrhythmias: THE Role of autoimmune and Inflammatory Cardiac Channelopathies. Nature Reviews Immunology, 19, 63-64.
https://doi.org/10.1038/s41577-018-0098-z
[15]  Aromolaran, A.S., Srivastava, U., Alí, A., et al. (2018) Interleu-kin-6 Inhibition of hERG Underlies Risk for Acquired Long QT in Cardiac and Systemic Inflammation. PLOS ONE, 13, e0208321.
https://doi.org/10.1371/journal.pone.0208321
[16]  Alí, A., Boutjdir, M. and Aromolaran, A.S. (2018) Cardiolipo-toxicity, Inflammation, and Arrhythmias: Role for Interleukin-6 Molecular Mechanisms. Frontiers in Physiology, 9, Arti-cle 1866.
https://doi.org/10.3389/fphys.2018.01866
[17]  Villegas, S., Villarreal, F.J. and Dillmann, W.H. (2000) Leukemia Inhibitory Factor and Interleukin-6 Downregulate Sarcoplasmic Reticulum Ca2+ ATPase (SERCA2) in Cardiac Myo-cytes. Basic Research in Cardiology, 95, 47-54.
https://doi.org/10.1007/s003950050007
[18]  Tanaka, T., Kanda, T., Takahashi, T., et al. (2004) Interleu-kin-6-Induced Reciprocal Expression of SERCA and Natriuretic Peptides mRNA in Cultured Rat Ventricular Myocytes. Journal of International Medical Research, 32, 57-61.
https://doi.org/10.1177/147323000403200109
[19]  Fontes, J.A., Rose, N.R. and ?iháková, D. (2015) The Varying Faces of IL-6: From Cardiac Protection to Cardiac Failure. Cyto-kine, 74, 62-68.
https://doi.org/10.1016/j.cyto.2014.12.024
[20]  Li, Q., Qin, M., Tan, Q., et al. (2020) Mi-croRNA-129-1-3p Protects Cardiomyocytes from Pirarubicin-Induced Apoptosis by Down-Regulating the GRIN2D-Mediated Ca(2+) Signalling Pathway. Journal of Cellular and Molecular Medicine, 24, 2260-2271.
https://doi.org/10.1111/jcmm.14908
[21]  Cappetta, D., Esposito, G., Coppini, R., et al. (2017) Effects of Ranolazine in a Model of Doxorubicin-Induced Left Ventricle Diastolic Dysfunction. British Journal of Pharmacology, 174, 3696-3712.
https://doi.org/10.1111/bph.13791
[22]  Sutanto, H., Lyon, A., Lumens, J., et al. (2020) Cardio-myocyte Calcium Handling in Health and Disease: Insights from in vitro and in silico Studies. Progress in Biophysics and Molecular Biology, 157, 54-75.
https://doi.org/10.1016/j.pbiomolbio.2020.02.008
[23]  Tantawy, A.A., Adly, A.A., Ismail, E.A., et al. (2015) En-dothelial Nitric Oxide Synthase Gene Intron 4 VNTR Polymorphism in Sickle Cell Disease: Relation to Vasculopathy and Disease Severity. Pediatric Blood & Cancer, 62, 389-394.
https://doi.org/10.1002/pbc.25234
[24]  Shashar, M., Chernichovski, T., Pasvolsky, O., et al. (2017) Vascular Endothelial Growth Factor Augments Arginine Transport and Nitric Oxide Generation via a KDR Receptor Signaling Pathway. Kidney and Blood Pressure Research, 42, 201-208.
https://doi.org/10.1159/000476016
[25]  Mamoshina, P., Rodriguez, B. and Bueno-Orovio, A. (2021) Toward a Broader View of Mechanisms of Drug Cardiotoxicity. Cell Reports Medicine, 2, Article ID: 100216.
https://doi.org/10.1016/j.xcrm.2021.100216
[26]  Taimeh, Z., Loughran, J., Birks, E.J., et al. (2013) Vascular En-dothelial Growth Factor in Heart Failure. Nature Reviews Cardiology, 10, 519-530.
https://doi.org/10.1038/nrcardio.2013.94
[27]  Izzedine, H., Ederhy, S., Goldwasser, F., et al. (2009) Management of Hypertension in Angiogenesis Inhibitor-Treated Patients. Annals of Oncology, 20, 807-815.
https://doi.org/10.1093/annonc/mdn713
[28]  Pondé, N.F., Lambertini, M. and De Azambuja, E. (2016) Twenty Years of Anti-HER2 Therapy-Associated Cardiotoxicity. ESMO Open, 1, e000073.
https://doi.org/10.1136/esmoopen-2016-000073
[29]  Goodwill, A.G., Dick, G.M., Kiel, A.M., et al. (2017) Regu-lation of Coronary Blood Flow. Compr Physiol Comprehensive Physiology, 7, 321-382.
https://doi.org/10.1002/cphy.c160016
[30]  Niederer, S.A., Campbell, K.S. and Campbell, S.G. (2019) A Short History of the Development of Mathematical Models of Cardiac mechanics. Journal of Molecular and Cellular Cardiol-ogy, 127, 11-19.
https://doi.org/10.1016/j.yjmcc.2018.11.015
[31]  Saleh, M. and Ambrose, J.A. (2018) Understanding Myocardial Infarction. F1000 Research, 7, Article 1378.
https://doi.org/10.12688/f1000research.15096.1
[32]  Senst, B., Kumar, A. and Diaz, R.R. (2022) Cardiac Surgery. StatPearls Publishing, Treasure Island (FL).
[33]  Herrmann, J., Yang, E.H., Iliescu, C.A., et al. (2016) Vascular Toxic-ities of Cancer Therapies: The Old and the New—An Evolving Avenue. Circulation, 133, 1272-1289.
https://doi.org/10.1161/CIRCULATIONAHA.115.018347
[34]  Venkatesh, P. and Kasi, A. Anthracyclines. StatPearls Publishing, Treasure Island (FL).
[35]  Martins-Teixeira, M.B. and Carvalho, I. (2020) Antitumour Anthracy-clines: Progress and Perspectives. ChemMedChem, 15, 933-948.
https://doi.org/10.1002/cmdc.202000131
[36]  Volkova, M. and Russell, R. (2011) Anthracycline Cardiotoxicity: Prevalence, Pathogenesis and Treatment. Current Cardiology Reviews, 7, 214-220.
https://doi.org/10.2174/157340311799960645
[37]  Cardinale, D., Colombo, A., Bacchiani, G., et al. (2015) Early Detection of Anthracycline Cardiotoxicity and Improvement with Heart Failure Therapy. Circulation, 131, 1981-1988.
https://doi.org/10.1161/CIRCULATIONAHA.114.013777
[38]  Ichikawa Y., Ghanefar, M., Bayeva, M., et al. (2014) Cardiotoxicity of Doxorubicin Is Mediated through Mitochondrial Iron Accumulation. Journal of Clinical Investigation, 124, 617-630.
https://doi.org/10.1172/JCI72931
[39]  Octavia, Y., Tocchetti, C.G., Gabrielson, K.L., et al. (2012) Doxorubicin-Induced Cardiomyopathy: from Molecular Mechanisms to Therapeutic Strategies. Journal of Molecular and Cellular Cardiology, 52, 1213-1225.
https://doi.org/10.1016/j.yjmcc.2012.03.006
[40]  Chen, S., Meng, X.F. and Zhang, C. (2013) Role of NADPH Oxidase-Mediated Reactive Oxygen Species in Podocyte Injury. BioMed Research International, 2013, Article ID: 839761.
https://doi.org/10.1155/2013/839761
[41]  Lubieniecka, J.M., Graham, J., Heffner, D., et al. (2013) A Discovery Study of Daunorubicin Induced Cardiotoxicity in a Sample of Acute Myeloid Leukemia Patients Prioritizes P450 Oxidoreductase Polymorphisms as a Potential Risk Factor. Frontiers in Genetics, 4, Article 231.
https://doi.org/10.3389/fgene.2013.00231
[42]  Pantazi, D. and Tselepis, A.D. (2022) Cardiovascular Toxic Effects of Antitumor Agents: Pathogenetic Mechanisms. Thrombosis Research, 213, S95-S102.
https://doi.org/10.1016/j.thromres.2021.12.017
[43]  Paul, M.K. and Mukhopadhyay, A.K. (2004) Tyrosine Ki-nase—Role and Significance in Cancer. International Journal of Medical Sciences, 1, 101-115.
https://doi.org/10.7150/ijms.1.101
[44]  Schramm, A., De Gregorio, N., Widschwendter, P., et al. (2015) Targeted Therapies in HER2-Positive Breast Cancer—A Systematic Review. Breast Care, 10, 173-178.
https://doi.org/10.1159/000431029
[45]  Barok, M., Joensuu, H. and Isola, J. (2014) Trastuzumab Emtansine: Mechanisms of Action and Drug Resistance. Breast Cancer Research, 16, Article No. 209.
https://doi.org/10.1186/bcr3621
[46]  Gajria, D. and Chandarlapaty, S. (2011) HER2-Amplified Breast Cancer: Mechanisms of Trastuzumab Resistance and Novel Targeted Therapies. Expert Review of Anticancer Therapy, 11, 263-275.
https://doi.org/10.1586/era.10.226
[47]  Yang, Z., Wang, W., Wang, X., et al. (2021) Cardiotoxicity of Epidermal Growth Factor Receptor 2-Targeted Drugs for Breast Cancer. Frontiers in Pharmacology, 12, Article ID: 741451.
https://doi.org/10.3389/fphar.2021.741451
[48]  Nunes, A.T. and Annunziata, C.M. (2017) Proteasome Inhibitors: Structure and Function. Seminars in Oncology, 44, 377-380.
https://doi.org/10.1053/j.seminoncol.2018.01.004
[49]  Wu, P., Oren, O., Gertz, M.A., et al. (2020) Proteasome In-hibitor-Related Cardiotoxicity: Mechanisms, Diagnosis, and Management. Current Oncology Reports, 22, Article No. 66.
https://doi.org/10.1007/s11912-020-00931-w
[50]  Cole, D.C. and Frishman, W.H. (2018) Cardiovascular Compli-cations of Proteasome Inhibitors Used in Multiple Myeloma. Cardiology in Review, 26, 122-129.
https://doi.org/10.1097/CRD.0000000000000183
[51]  Bodai, B.I. and Tuso, P. (2015) Breast Cancer Survivor-ship: A Comprehensive Review of Long-Term Medical Issues and Lifestyle Recommendations. The Permanente Jour-nal, 19, 48-79.
https://doi.org/10.7812/TPP/14-241
[52]  Hershman, D.L., Mcbride, R.B., Eisenberger, A., et al. (2008) Doxorubicin, Cardiac Risk Factors, and Cardiac Toxicity in Elderly Patients with Diffuse B-Cell Non-Hodgkin’s Lymphoma. Journal of Clinical Oncology, 26, 3159-3165.
https://doi.org/10.1200/JCO.2007.14.1242
[53]  Hequet, O., Le, Q.H., Moullet, I., et al. (2004) Subclinical Late Cardiomyopathy after Doxorubicin Therapy for Lymphoma in Adults. Journal of Clinical Oncology, 22, 1864-1871.
https://doi.org/10.1200/JCO.2004.06.033

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133