All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Contribution to the Study of Antibiotic Sensitivity of Streptococcus pneumoniae Strains in Spinal Cerebral Fluids in Bangui from 2017 to 2022

DOI: 10.4236/jbise.2023.167007, PP. 95-106

Keywords: Streptococcus pneumoniae, Sensitivity, Antibiotics, Central African Republic

Full-Text   Cite this paper   Add to My Lib

Abstract:


A prospective and analytical study was carried out from January 2017 to Decem-ber 2022, at the National Laboratory of Clinical Biology and Public Health (LNBCSP) in Bangui. 352 samples of cerebrospinal fluid (CSF) were confirmed out of 2065, coming from the four hospitals in Bangui. This study aimed to evalu-ate the evolution of antibiotic sensitivity to strains of Streptococcus pneumoniae. CSF had been collected from patients who presented with meningeal syndromes. Based on the leukocyte count (White blood cells 5 mm3), an aliquot was trans-ferred to trans-isolate medium and sent to the LNBCSP for confirmatory testing, culture and determination of antibiotic sensitivity. The antibiotic sensitivity of Streptococcus pneumoniae strains was tested according to the methods recom-mended by the Antibiogram Committee of the French Society of Microbiology. The data collected was entered into Excel 2010 to be analyzed with Epi Info 7.2. Ficher’s exact test, chi2 at the 5% threshold (p < 0.05) was used to compare pro-portions and analyze associations between variables. The average sensitivity rate to β-lactams was 74.43%. The sensitivity rate of Fluoroquinolones was 54.54%. That of levofloxacin was 87%. The average rate of sensitivity to β-lactams for the age group under 5 years old was 79.25%. That of fluoroquinolones was 52.59%. Levofloxacin had 90.37%. The average sensitivity rate to β-lactams for the age group over 5 years old was 76.03%. Fluoroquinolones had 45.16%. Levofloxacin had 69.58%. The average sensitivity rate to β-lactams for males was 76.68%. Fluoroquinolones had 54.26%. That of levofloxacin was 83.40%. The sensitivity rate to β-lactams for females was 74.41%. That of fluoroquinolones was 51.16%. Levofloxacin had 67.44%. Cyclins had 28.68%. The study noted an association between age and sensitivity (p < 0.05; CI [1.05-2.57]). Strains of Streptococcus pneumoniae were always detected in the CSF. The average rate of sensitivity to macrolides was 36.93%; aminoglycosides 28.69%; phenicols 63.35%; sulfona-mides 39.2%. These results could suggest a reduced sensitivity to β lactams.


References

[1]  McGill, F., Heyderman, R.S., Panagiotou, S., Tunkel, A.R. and Solomon, T. (2016) Acute Bacterial Meningitis in Adults. The Lancet, 388, 3036-3047. https://doi.org/10.1016/S0140-6736(16)30654-7
[2]  OMS (2011) Note de synthèse: Position de l’OMS sur les vaccins antiméningococciques, novembre 2011. Relevé épidémiologique Hebdomadaire, 47, 521-540.
https://who.int/iris/bitstream/10665/241846/1/WER8647_521-539.PDF
[3]  OMS (2017) Lutte contre la méningite épidémique dans les pays de la ceinture africaine de la méningite, 2016. Relevé épidémiologique Hebdomadaire, 13, 145-164.
[4]  Mbelesso, P., Tatangba-Bakozo, A. and Fikouma, V. (2006) Les méningites bactériennes de l’adulte en milieu hospitalier centrafricain. Bulletin de la Société de Pathologie Exotique, 99, 261-263.
[5]  Bercion, R., Bobossi-Serengbe, G., Gody, J.C., Beyam, E.N., Manirakiza, A. and Le Faou, A. (2008) Acute Bacterial Meningitis at the “Complexe Pédiatrique” of Bangui, Central African Republic. Journal of Tropical Pediatrics, 54, 125-128. https://doi.org/10.1093/tropej/fmm075
[6]  Lango-Yaya, E., Nambei, W.S., Djimeli, C.L., Nana, R., Vogbia, Z.D., Senzongo, O., et al. (2016) Molecular Diagnosis of Streptococcus pneumoniae Acute Meningitis and Profile of Sensitivity of Usual Antibiotics in Bangui, Central African Republic. International Journal of Research Studies in Microbiology and Biotechnology (IJRSMB), 2, 1-8.
[7]  Collège des maladies infectieuses. Microbiologie, Parasitologie, Mycologie 30 juin 2010.
http://www.infectiologie.org
[8]  Biance, V.é., Soulliéa, B. and Koecka, J.L. (2015) Les tests de diagnostic rapide et pathologies à pneumocoque et Legionella. Revue Francophone des Laboratoires, 474, 77-82. https://doi.org/10.1016/S1773-035X(15)30203-3
[9]  Organisation Mondiale de la Santé (2013) Mémento, soins hospitaliers pédiatriques. Prise en charge des affections courantes de l’enfance, 2ème Edition.
[10]  Obolski, U., Lourenço, J., Thompon, C., Thompson, R., Gori, A. and Gupta, S. (2018) Vaccination Can Drive an Increase in Frequencies of Antibiotic Resistance among Nonvaccine Serotypes of Streptococcus pneumoniae. Proceedings of the National Academy of Sciences of the United States of America, 115, 3102-3107.
https://doi.org/10.1073/pnas.1718712115
[11]  Melina, M., Milen, M., et al. (2016) The Relevance of a Novel Quantitative Assay to Detect up to 40 Major Streptococcus pneumoniae Serotypes Directly in Clinical Nasopharyngeal and Blood Specimens. PLOS ONE, 11, e0151428. https://doi.org/10.1371/journal.pone.0151428
[12]  Auburtin, M. and Timsit, J.F. (2001) Méningites à pneumocoque: Actualités, perspectives. Réanimation, 10, 291-301. https://www.srlf.org/wp-content/uploads/2015/11/0105-Reanimation-Vol10-N3-p291_301.pdf
[13]  Pilly, E. (2015) Maladies infectieuses et tropicales 2016. 25th Edition, Alinéa Plus, Paris.
[14]  Harmut, L. (2010) Safety and Tolerability of Commonly Prescribed Oral Antibiotics for the Treatment of Respiratory Tract Infections. The American Journal of Medicine, 123, S26-S38.
https://doi.org/10.1016/j.amjmed.2010.02.004
[15]  Pascal, S., Perrin-Guyomard, A. and Moulin, G. (2017) évolution de l’utilisation des antibiotiques en production animale. Cahiers de Nutrition et de Diététique, 52, 301-311. https://doi.org/10.1016/j.cnd.2017.06.002
[16]  Economou, V. and Gousia, P. (2015) Agriculture and Food Animals as a Source of Antimicrobial Resistant Bacteria. Infection and Drug Resistance, 8, 49-61. https://doi.org/10.2147/IDR.S55778
[17]  Ramdani, B., Ziane, H., Djennane, F., Bachtarzi, M. and Tazir, M. (2013) évolution de la résistance aux antibiotiques et des sérotypes de Streptococcus pneumoniae en Algérie. Santé-MAG, No. 18.
[18]  Van Boeckel, T.P., Gandra, S., Ashok, A., Caudron, Q., Grenfell, B.T., Levin, S.A. and Ramanan, L. (2014) Global Antibiotic Consumption 2000 to 2010: An Analysis of National Pharmaceutical Sales Data. The Lancet Infectious Diseases, 14, 742-750. https://doi.org/10.1016/S1473-3099(14)70780-7
[19]  Klein, E.Y., Van Boeckel, T.P., Martinez, E.M., Pant, S., Gandra, S., Levin, S.A., et al. (2018) Global Increase and Geographic Convergence in Antibiotic Consumption between 2000 and 2015. Proceedings of the National Academy of Sciences of the United States of America, 115, E3463-E3470. https://doi.org/10.1073/pnas.1717295115
[20]  Adiogo, D., Ngum, V.N., Beyala, F., Gonsu, K.H., Okomo, M.C. and Bayiha, G. (2013) Importance of Bacterial Resistance in Streptococcus pneumoniae and Streptococcus pyogenes in the Center Region in Cameroon. African Journal of Pathology and Microbiology, 2, Article ID: 235642. https://doi.org/10.4303/ajpm/235642
[21]  Académie des sciences américaines (PNAS).
[22]  Cilloniz, C., Martin-Loeches, I., Garcia-Vidal, C., San Jose, A. and Torres, A. (2016) Microbial Etiology of Pneumonia: Epidemiology, Diagnosis and Resistance Patterns. International Journal of Molecular Sciences, 17, 2120.
https://www.ncbi.nlm.nih.gov/pubmed/27999274
https://doi.org/10.3390/ijms17122120
[23]  O’Neill, J. (2016) Trackling Drug-Resistant Infections Globally: Final Report and Recommendations. 84.
[24]  Réseau, A.T.B. (2016) RAISIN. Surveillance de la consommation des antibiotiques, Résultats 2014, avec une synthèse et un diaporama de présentation.
[25]  Michel-Briand, Y. (2012) Aspects de la résistance bactérienne aux antibiotiques. Le Harmattan, Paris.
[26]  Jean-Luc, A.M. (2013) Résistance bactérienne et phytomolécules antimicrobiennes issues de Morinda morindoides. Agricultural sciences. Université de Bretagne occidentale-Brest, Université Félix Houphouët Boigny, Abidjan.
[27]  Varon, E. and Janoir, C. (2015) Rapport d’activité 2016. CNRP épidémiologie, 102.
http://atlas.ecdc.europa.eu/public/index.aspx?instance=generalAtlas
[28]  Cherazard, R., Epstein, M., Doan, T.L., Salim, T., Bharti, S. and Smith, M.A. (2017) Antimicrobial Resistant Streptococcus pneumoniae: Prevalence, Mechanisms, and Clinical Implications. American Journal of Therapeutics, 24, e361-e369. https://doi.org/10.1097/MJT.0000000000000551
[29]  Spellerberg, B. and Brandt, C.M. (2007) Streptococcus. In: Jorgensen, J.H., Carroll, K.C., Funke, G., Pfaller, M.A., Landry, M.L., Richter, S.S. and Warnock, D.W., Eds., Manual of Clinical Microbiology, 9th Edition, Wiley, Hoboken, 412-427.
[30]  Boisset, S. (2015) Epidémiologie du pneumocoque. Grenoble. http://www.infectiologie.com
[31]  Active Bacterial Core Surveillance (ABCs). http://www.cdc.gov/abcs
[32]  Cassini, A., Högberg, L.D., Plachouras, D., Quattrocchi, A., Hoxha, A., Simonsen, G.S., Mélanie, C.C., et al. (2019) Attributable Deaths and Disability-Adjusted Life-Years Caused by Infections with Antibiotic-Resistant Bacteria in the EU and the European Economic Area in 2015: A Population-Level Modelling Analysis. The Lancet Infectious Diseases, 19, 56-66. https://doi.org/10.1016/S1473-3099(18)30605-4
[33]  CA-SFM (2022) Comité de l’Antibiogramme de la Société Française de Microbiologie, 8/183 p.
[34]  Maria da Gloria, C.S., Maria, L.T., Mc Caustland, K., et al. (2007) Evaluation and Improvement of Real-Time PCR Assays Targeting lytA, ply and psaA Genes for Detection of Pneumococcal DNA. Journal of Clinical Microbiology, 45, 2460-2466. https://doi.org/10.1128/JCM.02498-06
[35]  Xing, W., Raydel, M., Cynthia, H., et al. (2011) Detection of Bacterial Pathogene in Mongolia meningitis Surveillance with a New Real-Time PCR Assay to Detect Haemophilus influenzae. International Journal of Medical Microbiology, 301, 303-309. https://doi.org/10.1016/j.ijmm.2010.11.004
[36]  Kambire, D., Soeters, H.M., Ouedraogo, T.R., Medah, I., Sangare, L., Yaméogo, I., Guetawendé, S., Abdoul, S., et al. (2016) Nationwide Trends in Bacterial Meningitis before the Introduction of 13-Valent Pneumococcal Conjugate Vaccine—Burkina Faso, 2011-2013. PLOS ONE, 16, e0166384.
https://doi.org/10.1371/journal.pone.0166384
[37]  Amin, M., Ghaderpanah, M. and Navidifar, T. (2016) Detection of Haemophilus influenzae Type b, Streptococcus agalactiae, Streptococcus pneumoniae and Neisseria meningitidis in CSF Specimens of Children Suspicious of Meningitis in Ahvaz, Iran. Journal of Medical Sciences, 32, 501-506.
https://doi.org/10.1016/j.kjms.2016.08.009
[38]  McCarthy, H., Jackson, M., Corcoran, M., Martha, M., Elaine, M., Imran, S., Breda, C., Richard, C. and Hillary, H. (2017) Colonisation of Irish Patients with Chronic Obstructive Pulmonary Disease by Streptococcus pneumoniae and Analysis of the Références Bibliographique Pneumococcal Vaccine Coverage: A Non-Interventional, Observational, Prospective Cohort Study. BMJ Open, 7, e013944.
https://doi.org/10.1136/bmjopen-2016-013944
[39]  Dia, M.L., Sonko, M.A., Ka, R., et al. (2013) Serotype and Antimicrobial Susceptibility Patterns of Streptococcus pneumoniae Isolates in Senegal between 1996 and 2010. Médecine et Maladies Infectieuses, 43, 304-307.
https://doi.org/10.1016/j.medmal.2013.06.006
[40]  Jehl, F., Chomarat, M., Weber, M., et al. (2003) Ain. Gerard: De l’antibiogramme à la prescription. 2eme Edition, France.
[41]  Le réseau Epibac. Surveillance des infections invasives à Haemophilus influenzae, Listeria monocytogenes, Neisseria meningitidis, Streptococcus pneumoniae, Streptococcus agalactiae (B) et Streptococcus pyogenes (A) en France Métropolitaine Avec les laboratoires hospitaliers du réseau.
http://www.invs.sante.fr/surveillance/epibac/default.html

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413