|
基于Vision Transformer和多头注意机制的频率稳定性预测方法
|
Abstract:
电力系统频率稳定性预测(frequency stability prediction, FSP)对于快速准确地制定故障后控制措施具有重要意义。然而,传统的数据驱动方法未能有效地将系统的时空特征纳入模型训练中,并且存在系统信息利用不足、抗噪能力差和面对新拓扑的泛化能力差等问题。针对上述问题,本文提出了一种基于多头注意机制和视觉变压器(Vision Transformer, ViT)的FSP预测方法。首先,所提出的预测方法利用位置编码层来捕捉系统的拓扑结构,以获得空间信息。其次,通过使用多通道输入层来捕获系统时间序列数据以获得时序信息。然后,采用基于多头注意力机制层来增强ViT模型的泛化能力和鲁棒性。在修改的新英格兰39总线系统上进行了测试。实验结果表明,与传统深度学习方法相比,本文所提ViT模型误差值在一般情况下降低了65.71%;在30 dB、20 dB和10 dB噪声环境下降低了61.55%、56.61%和47.14%;在拓扑改变环境下降低了49.09%,这证明了所提模型具有更高的预测精度、更好的鲁棒性和泛化能力。
Frequency stability prediction (FSP) of power systems is of great significance for quickly and accu-rately developing post fault control measures. However, traditional data-driven methods fail to ef-fectively incorporate the spatiotemporal features of the system into model training, and there are problems such as insufficient utilization of system information, poor noise resistance, and poor generalization ability in the face of new topologies. In response to the above issues, this article pro-poses an FSP prediction method based on multi-head attention mechanism and Vision Transformer (ViT). Firstly, the proposed prediction method utilizes a position encoding layer to capture the top-ological structure of the system and obtain spatial information. Secondly, by using multi-channel input layers to capture system time series data to obtain temporal information. Then, a multi-head attention mechanism layer is used to enhance the generalization ability and robustness of the ViT model, tested on the modified New England 39 bus system. The experimental results show that compared with traditional deep learning methods, the error value of the ViT model proposed in this paper is generally reduced by 65.71%; Reduced by 61.55%, 56.61%, and 47.14% in 30 dB, 20 dB, and 10 dB noise environments; The reduction of 49.09% in the topology changing environment proves that the proposed model has higher prediction accuracy, better robustness, and generaliza-tion ability.
[1] | 林旻威, 温步瀛. 大规模风电接入对电力系统暂态稳定性影响研究综述[J]. 电气技术, 2017, 20(4): 1-8, 38. |
[2] | 王琦, 郭钰锋, 万杰, 等. 适用于高风电渗透率电力系统的火电机组一次调频策略[J]. 中国电机工程学报, 2018, 38(4): 974-984. |
[3] | 李锡林, 查晓明, 田震, 黄萌, 胡宇飞. 频率突变影响下基于Lyapunov法的孤岛微电网暂态稳定性分析[J]. 电工技术学报, 2023, 38(S1): 18-31+55. https://doi.org/10.19595/j.cnki.1000-6753.tces.L10069 |
[4] | 关中杰, 鲁效平, 李钢强, 等. 基于风速模型的风电机组动态转矩前馈控制技术[J]. 电工技术学报, 2018, 33(22): 5338-5345. |
[5] | Azizi, S., Sun, M., Liu, G. and Terzija, V. (2020) Local Frequency-Based Estimation of the Rate of Change of Frequency of the Center of Inertia. IEEE Transactions on Power Systems, 35, 4948-4951.
https://doi.org/10.1109/TPWRS.2020.3014818 |
[6] | 陈宗遥, 卜旭辉, 郭金丽. 基于神经网络的数据驱动互联电力系统负荷频率控制[J]. 电工技术学报, 2022, 37(21): 5451-5461. |
[7] | 苏玉刚, 颜志琼, 胡宏晟, 等. 基于频率切换实现恒流/恒压输出的电场耦合无线电能传输系统[J/OL]. 中国电机工程学报: 1-13. https://doi.org/10.13334/j.0258-8013.pcsee.223014, 2023-04-16. |
[8] | Cao, Y., Zhang, H., Zhang, Y., Xie, Y. and Ma, C. (2020) Extending SFR Model to Incorporate the Influence of Thermal States on Primary Frequency Response. IET Generation, Transmission & Distribution, 14, 4069-4078.
https://doi.org/10.1049/iet-gtd.2020.0206 |
[9] | 石访, 张林林, 胡熊伟, 于之虹, 张恒旭. 基于多属性决策树的电网暂态稳定规则提取方法[J]. 电工技术学报, 2019, 34(11): 2364-2374. |
[10] | 马良玉, 程善珍. 基于支持向量数据描述和XGBoost的风电机组异常工况预警研究[J]. 电工技术学报, 2022, 37(13): 3241-3249. |
[11] | 叶瑞丽, 郭志忠, 刘瑞叶, 等. 基于小波包分解和改进Elman神经网络的风电场风速和风电功率预测[J]. 电工技术学报, 2017, 32(21): 103-111. |
[12] | 崔昊, 冯双, 陈佳宁, 等. 基于自编码器与长短期记忆网络的宽频振荡广域定位方法[J]. 电力系统自动化, 2022, 46(12): 194-201. |
[13] | 王彦博, 吴俊勇, 季佳伸, 等. 基于深度残差收缩网络的电力系统暂态频率安全集成评估[J]. 电网技术, 2023, 47(2): 482-492. |
[14] | 时纯, 刘君, 梁卓航, 等. 基于GAN和多通道CNN的电力系统暂态稳定评估[J]. 电网技术, 2022, 46(8): 3191-3202. |
[15] | 王铮澄, 周艳真, 郭庆来, 等. 考虑电力系统拓扑变化的消息传递图神经网络暂态稳定评估[J]. 中国电机工程学报, 2021, 41(7): 2341-2349. |
[16] | Xie, J. and Sun, W. (2021) A Transfer and Deep Learning-Based Method for Online Frequency Stability Assessment and Control. IEEE Access, 9, 75712-75721. https://doi.org/10.1109/ACCESS.2021.3082001 |
[17] | Zhan, X., Han, S., Rong, N., et al. (2022) A Two-Stage Transient Stability Prediction Method Using Convolutional Residual Memory Network and Gated Recurrent Unit. International Journal of Electrical Power & Energy Systems, 138, Article ID: 107973. https://doi.org/10.1016/j.ijepes.2022.107973 |
[18] | Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al. (2020) An Image Is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arXiv: 2010.11929. |
[19] | 韩天森, 陈金富, 李银红, 等. 电力系统稳定评估机器学习可解释代理模型研究[J]. 中国电机工程学报, 2020, 40(13): 4122-4130. |
[20] | 陈明华, 刘群英, 张家枢, 等. 基于XGBoost的电力系统暂态稳定预测方法[J]. 电网技术, 2020, 44(3): 1026-1033. |
[21] | Yu, B., Yin, H. and Zhu, Z. (2017) Spa-tio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. arXiv: 1709.04875. https://doi.org/10.24963/ijcai.2018/505 |
[22] | Zhao, J., Tang, Y. and Terzija, V. (2018) Robust Online Estimation of Power System Center of Inertia Frequency. IEEE Transactions on Power Systems, 34, 821-825. https://doi.org/10.1109/TPWRS.2018.2879782 |
[23] | Lee, I. and Kang, J. (2019) Self-Attention Graph Pooling. Proceedings of Machine Learning Research, 97, 3734-3743. |
[24] | 赵荣臻, 文云峰, 叶希, 唐权, 李文沅, 陈云辉, 瞿小斌. 基于改进堆栈降噪自动编码器的预想事故频率指标评估方法研究[J]. 中国电机工程学报, 2019, 39(14): 4081-4092. |
[25] | 文云峰, 赵荣臻, 肖友强, 刘祯斌. 基于多层极限学习机的电力系统频率安全评估方法[J]. 电力系统自动化, 2019, 43(1): 133-140. |