全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

快速充电条件下的电池热管理研究进展
Research Progress of Battery Thermal Management under Fast Charging Conditions

DOI: 10.12677/MOS.2023.126485, PP. 5337-5353

Keywords: 电动汽车,锂离子电池,快速充电,热管理
Electric Vehicle
, Lithium-Ion Battery, Fast Charging, Thermal Management

Full-Text   Cite this paper   Add to My Lib

Abstract:

为促进生态环境的可持续发展,发展新能源汽车已成为各国的共识。与传统汽车相比,较长的充电时间制约了新能源汽车的进一步推广。快速充电是解决这一问题的关键技术,但大倍率地充放电会使电池在短时间内产生大量热量,对电池热管理系统提出了更高的要求。本文介绍了锂电池产热机理和模型,总结了新能源汽车快速充电条件下电池热管理研究现状,比较了空气冷却系统、液体冷却系统、相变冷却系统和热管冷却系统在大倍率充放电时的优缺点,讨论了各种热管理系统的发展趋势,分析指出了快速充电条件下动力电池热管理中有待进一步研究的问题。提出使用多种散热方式相耦合的热管理系统,在提高系统散热速率的同时维持电池模组的温度均匀性。
In order to promote the sustainable development of the ecological environment, the development of new energy vehicles has become the consensus of all countries. Compared with traditional vehicles, the longer charging time restricts the further promotion of new energy vehicles. Fast charging is the key technology to solve this problem, but the large rate of charging and discharging will make the battery generate a lot of heat in a short time, which puts forward higher requirements for the bat-tery thermal management system. This paper introduces the heat generation mechanism and model of lithium batteries, summarizes the research status of battery thermal management under the condition of fast charging of new energy vehicles, compares the advantages and disadvantages of air cooling system, liquid cooling system, phase change cooling system and heat pipe cooling sys-tem in large rate charging and discharging, discusses the development trend of various thermal management systems, and analyzes and points out the problems that need further research in thermal management of power batteries under fast charging conditions. A thermal management system coupled with multiple heat dissipation methods is proposed to improve the heat dissipation rate of the system while maintaining the temperature uniformity of the battery module.

References

[1]  林维奇, 陈启杰. 关于新能源汽车的文献综述[J]. 特区经济, 2012(11): 287-290.
[2]  姚兰. 2021年新能源汽车产销同超350万辆[J]. 汽车纵横, 2022(2): 107-108.
[3]  姚兰. 2022年新能源汽车销量超过680万辆[J]. 汽车纵横, 2023(2): 106-107.
[4]  Ceder, G. (2010) Opportunities and Challenges for First-Principles Materials Design and Applications to Li Bat-tery Materials. MRS Bulletin, 35, 693-701.
https://doi.org/10.1557/mrs2010.681
[5]  汤爱华, 龚鹏, 姚疆, 等. 电动汽车用锂离子动力电池大功率快充方法研究[J]. 南京理工大学学报, 2021, 45(6): 761-772.
[6]  Aneke, M. and Wang, M. (2016) Energy Storage Technologies and Real Life Applications—A State of the Art Review. Applied Energy, 179, 350-377.
https://doi.org/10.1016/j.apenergy.2016.06.097
[7]  Zhao, R., Gu, J. and Liu, J. (2018) Performance Assessment of a Passive Core Cooling Design for Cylindrical Lithium-Ion Batteries. International Journal of Energy Research, 42, 2728-2740.
https://doi.org/10.1002/er.4061
[8]  Zhao, R., Gu, J. and Liu, J. (2015) An Experimental Study of Heat Pipe Thermal Management System with Wet Cooling Method for Lithium Ion Batteries. Journal of Power Sources, 273, 1089-1097.
https://doi.org/10.1016/j.jpowsour.2014.10.007
[9]  Anthony, B., Benjamin, D., Sebastien, G., Mathias, G., Frederic, S. and Delphine, R. (2013) A Review on Lithium-Ion Battery Ageing Mechanisms and Estimations for Automotive Applications. Power Sources, 241, 680-689.
https://doi.org/10.1016/j.jpowsour.2013.05.040
[10]  Gu, L., Gui, J.Y., Wang, J.V., Zhu, G. and Kang, J. (2019) Parame-terized Evaluation of Thermal Characteristics for a Lithium-Ion Battery. Energy, 178, 21-32.
https://doi.org/10.1016/j.energy.2019.04.119
[11]  Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J. and Chen, C. (2012) Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery. Journal of Power Sources, 208, 210-224.
https://doi.org/10.1016/j.jpowsour.2012.02.038
[12]  陈风月, 王金生, 江城城, 等. 纯电动汽车自燃原因分析及预防[J]. 农机使用与维修, 2021(12): 13-15.
[13]  Kumar, R. and Goel, V. (2023) A Study on Thermal Management System of Lithium-Ion Batteries for Electrical Vehicles: A Critical Review. Journal of Energy Storage, 71, Article ID: 108025.
https://doi.org/10.1016/j.est.2023.108025
[14]  He, L., Jing, H., Zhang, Y., Li, P. and Gu, Z. (2023) Review of Thermal Management System for Battery Electric Vehicle. Journal of Energy Storage, 59, Article ID: 106443.
https://doi.org/10.1016/j.est.2022.106443
[15]  王青松, 孙金华, 陈思凝, 等. 锂离子电池热安全性的研究进展[J]. 电池, 2005, 35(3): 240-241.
[16]  Tomaszewska, A., Chu, Z., Feng, X., O’Kane, S., Liu, X., et al. (2019) Lithium-Ion Battery Fast Charging: A Review. eTransportation, 1, Article ID: 100011.
https://doi.org/10.1016/j.etran.2019.100011
[17]  杨晨, Gross U. 基于热传导逆问题方法预测材料热物性参数[J]. 化工学报, 2005(12): 2415-2420.
[18]  Chen, C., Shang, F., Salameh, M. and Krishnamurthy, M. (2018) In Challenges and Advancements in Fast Charging Solutions for EVs: A Techno-logical Review. 2018 IEEE Transportation Electrification Conference and Expo (ITEC), Long Beach, 13-15 June 2018, 695-701.
https://doi.org/10.1109/ITEC.2018.8450139
[19]  Mei, W., Chen, H., Sun, J. and Wang, Q. (2018) Numerical Study on Tab Dimension Optimization of Lithium-Ion Battery from the Thermal Safety Perspective. Applied Thermal Engineer-ing, 142, 148-165.
https://doi.org/10.1016/j.applthermaleng.2018.06.075
[20]  Lai, Y., Du, S., Ai, L., Cheng, Y., Tang, Y. and Jia, M. (2015) Insight into Heat Generation of Lithium Ion Batteries Based on the Electrochemical-Thermal Model at High Discharge Rates. International Journal of Hydrogen Energy, 40, 13039-13049.
https://doi.org/10.1016/j.ijhydene.2015.07.079
[21]  Ye, Y., Saw, L.H., Shi, Y. and Tay, A.A.O. (2015) Numerical Analyses on Optimizing a Heat Pipe Thermal Management System for Lithium-Ion Batteries during Fast Charging. Applied Thermal Engineering, 86, 281-291.
https://doi.org/10.1016/j.applthermaleng.2015.04.066
[22]  Zeng, Y., Chalise, D., Lubner, S.D., Kaur, S. and Prasher, R.S. (2021) A Review of Thermal Physics and Management inside Lithium-Ion Batteries for High Energy Density and Fast Charg-ing. Energy Storage Materials, 41, 264-288.
https://doi.org/10.1016/j.ensm.2021.06.008
[23]  蔡飞龙, 许思传, 常国峰. 纯电动汽车用锂离子电池热管理综述[J]. 电源技术, 2012, 36(9): 1410-1413.
[24]  安周建, 赵亚兵, 敏政, 等. 基于风冷散热的锂离子电池外部冷却模式与内部热物性特征的耦合分析[J]. 华南理工大学学报(自然科学版), 2022, 50(2): 121-128.
[25]  Hong, S. and Regan, D. (2014) Development of Cooling Strategy for an Air-Cooled Lithium-Ion Battery Pack. Power Sources, 272, 404-414.
https://doi.org/10.1016/j.jpowsour.2014.08.107
[26]  Wu, M. (2022) Multi-Objective Optimization of U-Type Air-Cooled Thermal Management System for Enhanced Cooling Behavior of Lithium-Ion Battery Pack. Journal of Energy Storage, 56, Ar-ticle ID: 106004.
https://doi.org/10.1016/j.est.2022.106004
[27]  Xie, J., Ge, Z., Zang, M. and Wang, S. (2017) Structural Optimization of Lithium-Ion Battery Pack with Forced Air Cooling System. Applied Thermal Engineering, 126, 583-593.
https://doi.org/10.1016/j.applthermaleng.2017.07.143
[28]  Wang, N., Li, C., Li, W., Huang, M. and Qi, D. (2021) Effect Analysis on Performance Enhancement of a Novel Air Cooling Battery Thermal Management System with Spoilers. Applied Thermal Engineering, 192, Article ID: 116932.
https://doi.org/10.1016/j.applthermaleng.2021.116932
[29]  张甫仁, 易孟斐, 汪鹏伟, 等. 锂离子电池复合热管理系统的多目标优化[J]. 重庆交通大学学报(自然科学版), 2022, 41(9): 147-154.
[30]  Chen, D., Jiang, J., Kim, G. H., Yang, C. and Pesaran, A. (2016) Comparison of Different Cooling Methods for Lithium Ion Battery Cells. Applied Thermal Engi-neering, 94, 846-854.
https://doi.org/10.1016/j.applthermaleng.2015.10.015
[31]  Zhang, Q., Cao, G. and Zhang, X. (2023) Study of Wet Cool-ing Flat Heat Pipe for Battery Thermal Management Application. Applied Thermal Engineering, 219, Article ID: 119407.
https://doi.org/10.1016/j.applthermaleng.2022.119407
[32]  李志扬, 鲁文凡, 吕帅帅, 等. 电动汽车动力电池组热管理系统研究进展[J]. 化工新型材料, 2017, 45(8): 29-31.
[33]  Xia, G., Cao, L. and Bi, G. (2017) A Review on Battery Thermal Management in Electric Vehicle Application. Journal of Power Sources, 367, 90-105.
https://doi.org/10.1016/j.jpowsour.2017.09.046
[34]  Zhang, X., Li, Z., Luo, L., Fan, Y. and Du, Z. (2022) A Review on Thermal Management of Lithium-Ion Batteries for Electric Vehicles. Energy, 238, Article ID: 121652.
https://doi.org/10.1016/j.energy.2021.121652
[35]  Jin, L., Lee, P., Kong, X., Fan, Y. and Chou, S. (2014) Ultra-Thin Minichannel LCP for EV Battery Thermal Management. Applied Energy, 113, 1786-1794.
https://doi.org/10.1016/j.apenergy.2013.07.013
[36]  Siruvuri, S. and Budarapu, P. (2020) Studies on Thermal Manage-ment of Lithium-Ion Battery Pack Using Water as the Cooling Fluid. Journal of Energy Storage, 29, Article ID: 101377.
https://doi.org/10.1016/j.est.2020.101377
[37]  Amalesh, T. and Narasimhan, N.L. (2020) Introducing New Designs of Minichannel Cold Plates for the Cooling of Lithium-Ion Batteries. Power Sources, 479, Article ID: 228775.
https://doi.org/10.1016/j.jpowsour.2020.228775
[38]  Li, Y., Zhou, Z. and Wu, W. (2019) Three-Dimensional Thermal Modeling of Li-Ion Battery Cell and 50 V Li-Ion Battery Pack Cooled by Mini-Channel Cold Plate. Applied Thermal Engineer-ing, 147, 829-840.
https://doi.org/10.1016/j.applthermaleng.2018.11.009
[39]  孙悦, 陶乐仁, 雷良新, 等. 并联液冷电池热管理系统仿真分析[J]. 农业装备与车辆工程, 2021, 59(6): 19-24.
[40]  Zheng, Y., Shi, Y. and Huang, Y. (2019) Optimisation with Adia-batic Interlayers for Liquid-Dominated Cooling System on Fast Charging Battery Packs. Applied Thermal Engineering, 147, 636-646.
https://doi.org/10.1016/j.applthermaleng.2018.10.090
[41]  Huo, Y., Rao, Z., Liu, X. and Zhao, J. (2015) Investigation of Power Battery Thermal Management by Using Mini-Channel Cold Plate. Energy Conversion and Management, 89, 387-395.
https://doi.org/10.1016/j.enconman.2014.10.015
[42]  Lai, Y., Wu, W., Chen, K., Wang, S. and Xin, C. (2019) A Compact and Lightweight Liquid-Cooled Thermal Management Solution for Cylindrical Lithium-Ion Power Battery Pack. International Journal of Heat and Mass Transfer, 144, Article ID: 118581.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118581
[43]  王波, 孙聪聪, 王雅亮, 等. 基于PCM的锂电池保温及预热性能研究[J]. 化学工程, 2022, 50(6): 23-28.
[44]  许卓新. 相变储能材料的分类及应用探究[J]. 中国设备工程, 2019(2): 116-117.
[45]  张浩文, 秦永法, 翁佳昊, 等. 车用锂离子电池相变冷却技术研究综述[J]. 汽车工艺与材料, 2021(2): 43-48.
[46]  Ai, U. and Selman, J. (2000) A Novel Thermal Management System for Electric Vehicle Batteries Using Phase-Change Material. Journal of the Electrochemical Society, 147, 3231-3236.
https://doi.org/10.1149/1.1393888
[47]  Wang, Z., Zhang, Z., Jia, L. and Yang, L. (2015) Paraffin and Paraffin/Aluminum Foam Composite Phase Change Material Heat Storage Experimental Study Based on Thermal Management of Li-Ion Battery. Applied Thermal Engineering, 78, 428-436.
https://doi.org/10.1016/j.applthermaleng.2015.01.009
[48]  Samimi, F., Ba-bapoor, A., Azizi M. and Karimi, G. (2016) Thermal Management Analysis of a Li-Ion Battery Cell Using Phase Change Mate-rial Loaded with Carbon Fibers. Energy, 96, 355-371.
https://doi.org/10.1016/j.energy.2015.12.064
[49]  Zou, D., Ma, X., Liu, X., Zheng, P. and Hu, Y. (2018) Thermal Per-formance Enhancement of Composite Phase Change Materials (PCM) Using Graphene and Carbon Nanotubes as Additives for the Potential Application in Lithium-Ion Power Battery. International Journal of Heat and Mass Transfer, 120, 33-41.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.024
[50]  Li, W.Q., Qu, Z.G., He, Y.L. and Tao, Y.B. (2014) Experi-mental Study of a Passive Thermal Management System for High-Powered Lithium Ion Batteries Using Porous Metal Foam Saturated with Phase Change Materials. Journal of Power Sources, 255, 9-15.
https://doi.org/10.1016/j.jpowsour.2014.01.006
[51]  Zhang, X., Liu, C. and Rao, Z. (2018) Experimental Investigation on Thermal Management Performance of Electric Vehicle Power Battery Using Composite Phase Change Material. Journal of Cleaner Production, 201, 916-924.
https://doi.org/10.1016/j.jclepro.2018.08.076
[52]  Zhang, Z. and Li, Y. (2017) Experimental Study of a Passive Thermal Management System Using Copper Foam-Paraffin Composite for Lithium Ion Batteries. Energy Procedia, 142, 2403-2408.
https://doi.org/10.1016/j.egypro.2017.12.174
[53]  刘军, 卓威, 张文灿, 托尼, 等. 基于PCM/泡沫铜/多孔热管复合相变材料的动力电池热管理研究[J]. 功能材料, 2018, 49(7): 7070-7075.
[54]  Abid, H., Irfan, H., Abidi, Chi, Y., Ka, C. and Luo, Z. (2018) Thermal Management of LIBs Using Graphene Coated Nickel Foam Saturated with Phase Change Materials. International Journal of Thermal Sciences, 124, 23-35.
https://doi.org/10.1016/j.ijthermalsci.2017.09.019
[55]  Zhao, J., Lv, P. and Rao, Z. (2017) Experimental Study on the Thermal Management Performance of Phase Change Material Coupled with Heat Pipe for Cylindrical Power Battery Pack. Ex-perimental Thermal and Fluid Science, 82, 182-188.
https://doi.org/10.1016/j.expthermflusci.2016.11.017
[56]  Luo, X., Guo, Q., Li, X., Tao, Z., Lei, S., Liu, J., et al. (2020) Experimental Investigation on a Novel Phase Change Material Composites Coupled with Graphite Film Used for Thermal Management of Lithium-Ion Batteries. Renewable Energy, 145, 2046-2055.
https://doi.org/10.1016/j.renene.2019.07.112
[57]  Gu, Q., Li, G. and Wu, Z. (2022) The Analysis on the Battery Thermal Management System with Composite Phase Change Materials Coupled Air Cooling and Fins. Journal of Energy Storage, 56, Article ID: 105977.
https://doi.org/10.1016/j.est.2022.105977
[58]  Faizan, M., Pati, S. and Randive, P. (2022) Implications of Novel Cold Plate Design with Hybrid Cooling on Thermal Management of Fast Discharging Lithium-Ion Battery. Journal of Energy Stor-age, 53, Article ID: 105051.
https://doi.org/10.1016/j.est.2022.105051
[59]  张晨阳, 张晓明. 热管换热器的研究现状与应用[J]. 建筑与预算, 2020(11): 38-40.
[60]  刘叶, 周磊, 昝元峰, 等. 热管技术在先进反应堆中的应用现状[J]. 核动力工程, 2016, 37(6): 121-124.
[61]  Wang, Z.Y., Diao, Y.H., Liang, L., Zhao, Y.H., Zhu, T.T. and Bai, F.W. (2017) Experimental Study on an Inte-grated Collector Storage Solar Air Heater Based on Flat Micro-Heat Pipe Arrays. Energy and Buildings, 152, 615-628.
https://doi.org/10.1016/j.enbuild.2017.07.069
[62]  Jaguemont, J. and Van Joeri, M. (2020) A Comprehensive Review of Future Thermal Management Systems for Battery-Electrified Vehicles. Journal of Energy Storage, 31, Article ID: 101551.
https://doi.org/10.1016/j.est.2020.101551
[63]  Behi, H., Karimi, D., Behi, M., Jaguemont, J., Ghanbarpour, M., Behnia, M., et al. (2020) Thermal Management Analysis Using Heat Pipe in the High Current Discharging of Lithium-Ion Battery in Electric Vehicles. Journal of Energy Storage, 32, Article ID: 101893.
https://doi.org/10.1016/j.est.2020.101893
[64]  Wei, A., Qu, J. and Qiu, H. (2019) Heat Transfer Characteristics of Plug-In Oscillating Heat Pipe with Binary-Fluid Mixtures for Electric Vehicle Battery Thermal Management. Heat and Mass Transfer, 135, 746-760.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.021
[65]  丹聃, 连红奎, 张扬军, 等. 基于平板热管技术的电池热管理系统实验研究[J]. 中国科学: 技术科学, 2019, 49(9): 1023-1030.
[66]  Zhao, J., Lv, P. and Rao, Z. (2017) Experi-mental Study on the Thermal Management Performance of Phase Change Material Coupled with Heat Pipe for Cylindrical Pow-er Battery Pack. Experimental Thermal and Fluid Science, 82, 182-188.
https://doi.org/10.1016/j.expthermflusci.2016.11.017
[67]  Liang, J., Gan, Y. and Li, Y. (2018) Investigation on the Ther-mal Performance of a Battery Thermal Management System Using Heat Pipe under Different Ambient Temperatures. Energy Conversion and Management, 155, 1-9.
https://doi.org/10.1016/j.enconman.2017.10.063
[68]  Shah, K., Mckee, C., Chalise, D. and Jain, A. (2016) Experimental and Numerical Investigation of Core Cooling of Li-Ion Cells Using Heat Pipes. Energy, 113, 852-860.
https://doi.org/10.1016/j.energy.2016.07.076
[69]  Worwood, D., Kellner, Q., Wojtala, M., Widanage, W. D., Mglen, R., Greenwood, D., et al. (2017) A New Approach to the Internal Thermal Management of Cylindrical Battery Cells for Automotive Applications. Journal of Power Sources, 346, 151-166.
https://doi.org/10.1016/j.jpowsour.2017.02.023

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133