|
增程式客车动力系统参数计算及仿真分析
|
Abstract:
针对目前旅游出行,新能源客车存在动力性能不足及续航里程焦虑问题,本文基于某城市客车匹配出一款增程式客车。根据目标任务需求、工作场景、整车驱动结构布置和行驶动力性能等,对客车增程器系统、驱动电机及动力电池进行参数匹配计算。利用AVL-CRUISE软件搭建整车模型、设置仿真任务并验证了匹配的合理性,结果表明:在中国普通客车行驶工况(CHTC-C)下车辆运动跟随情况良好、客车最高车速达到99 km/h、0~50 km/h加速时间为17.99 s较指标要求提升21.78%、最大爬坡度20.8%、续航里程为692 km相比指标要求提高了38.4%,各方面均达到指标要求。
In view of the current tourism travel, new energy buses have insufficient power performance and cruising range anxiety, and this paper matches a range extension bus based on a city bus. According to the target task requirements, working scenarios, vehicle drive structure layout and driving pow-er performance, the parameters of the bus range extender system, drive motor and power battery are matched and calculated. The AVL-CRUISE software was used to build the vehicle model, set the simulation task and verify the rationality of the matching, and the results showed that the vehicle motion following was good under the Chinese ordinary bus driving condition (CHTC-C), the maxi-mum speed of the bus reached 99 km/h, and the acceleration time of 0~50 km/h was 17.99 s, which was 21.78% higher than the index requirements, the maximum climbing degree was 20.8%, and the cruising range was 692 km, which was 38.4% higher than the index requirements. All as-pects meet the target requirements.
[1] | 关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[Z/OL].
http://www.gov.cn/gongbao/content/2021/content_5649728.htm, 2021-09-22. |
[2] | 盛广庆, 汪伟, 杨凤敏, 罗金, 王汝佳. 增程式电动汽车增程器多目标优化控制策略研究[J]. 江苏理工学院学报, 2020, 26(6): 68-74. |
[3] | 王玉猛. SUV增程式电动汽车动力系统参数匹配与性能仿真[D]: [硕士学位论文]. 长春: 吉林大学, 2021. |
[4] | 刘钊. 增程式电动客车动力系统研究[D]: [博士学位论文]. 西安: 长安大学, 2019. |
[5] | 宋珂, 章桐, 李飞强. 燃料电池增程式电动汽车动力系统开发[M]. 上海: 同济大学出版社, 2021. |
[6] | 全国汽车标准化技术委员会. GB/T 18386.2022重型商用车实验方法[S]. 北京: 中国标准出版社, 2022. |
[7] | 全国汽车标准化技术委员会. GB/T 19752.2005混合动力电动汽车动力性能实验方法[S]. 北京: 中国标准出版社, 2005. |
[8] | 沈启平. 车用高功率密度永磁同步电机的研究[D]: [博士学位论文]. 沈阳: 沈阳工业大学, 2012. |
[9] | 全国汽车标准化技术委员会. GB/T 31466-2015电动汽车高压系统电压等级[S]. 北京: 中国标准出版社, 2015. |
[10] | 全国汽车标准化技术委员会. GB/T 38146.2-2019中国汽车行驶工况 第2部分: 重型商用车[S]. 北京: 中国标准出版社, 2019. |
[11] | 杨裕生. 增程式汽车将是未来汽车主力[N]. 中国能源报, 2019-12-16(17). |
[12] | Nan, J.R., Li, X. and Wu, W. (2013) Study on the Matching Design of an Extended Range Electric Ve-hicle Powertrain System. 2013 Fourth International Conference on Digital Manufacturing & Automation, Shinan, 29-30 June 2013, 1315-1318. https://doi.org/10.1109/ICDMA.2013.314 |
[13] | 李永亮, 黄英, 王绪, 郭汾. 增程式电动汽车动力系统参数匹配及控制策略优化[J]. 汽车工程学报, 2021, 11(3): 177-190. https://doi.org/10.3969/j.issn.2095-1469.2021.03.04 |
[14] | Pozzato, G., Formentin, S., Panzani, G. and Savaresi, S.M. (2020) Least Costly Energy Management for Extended- Range Electric Vehicles: An Economic Optimization Framework. Eu-ropean Journal of Control, 56, 218-230.
https://doi.org/10.1016/j.ejcon.2020.01.001 |
[15] | Ye, J., Feng, H., Xiong, W.Y., Gong, Q.C.Y., Xu, J.B., and Shen, A.W. (2021) A Real-Time Model Predictive Controller for Power Control in Extended-Range Auxiliary Power Unit. IEEE Transac-tions on Vehicular Technology, 70, 11419-11432. https://doi.org/10.1109/TVT.2021.3113979 |