|
慢性腰痛患者的脑静息态功能磁共振研究进展
|
Abstract:
慢性腰痛(CLBP)是一种常见的健康问题,可发生在所有年龄段的人群中,影响着全球数以百万计的人。但目前关于慢性腰痛的神经病理学机制尚不明确。近年来,脑静息态功能磁共振成像(RS-fMRI)作为一种无创、非侵入性的神经影像学技术,受到越来越多的关注,并被广泛应用于研究CLBP患者的脑神经活动。RS-fMRI使我们能够在网络水平上研究慢性疼痛的病理生理机制,而机器学习使我们能够识别患者的大脑特征并进行准确分类,二者结合常应用于疾病的诊断、分类和预后等方面。虽然国内外对慢性疼痛引起大脑功能的改变做出了一定的研究,但对慢性腰痛引起脑功能的改变仍没有统一定论,本文就目前脑静息态功能磁共振在慢性腰痛患者中的研究进展作一综述。
Chronic low back pain (CLBP) is a common health problem that can occur in people of all ages and affects millions of people worldwide. However, there is a lack of clarity regarding the neuropatho-logic mechanisms of chronic low back pain. In recent years, brain resting-state functional magnetic resonance imaging (RS-fMRI), a noninvasive and noninvasive neuroimaging technique, has received increasing attention and has been widely used to study the brain neural activity of patients with CLBP. RS-fMRI allows us to study the pathophysiological mechanisms of chronic pain at the network level, while machine learning enables us to recognize patients’ brain features and perform an accu-rate classification, and the combination of the two is often applied to the diagnosis, classification and prognosis of diseases. Although some research has been done both at home and abroad on the changes in brain function caused by chronic pain, there is still no unified conclusion on the changes in brain function caused by chronic low back pain. In this paper, we present a review of the current progress of the study of brain resting state functional magnetic resonance in patients with chronic low back pain.
[1] | Knezevic, N.N., Candido, K.D., Vlaeyen, J.W.S., Van Zundert, J. and Cohen, S.P. (2021) Low Back Pain. The Lancet, 398, 78-92. https://doi.org/10.1016/S0140-6736(21)00733-9 |
[2] | Traeger, A.C., Qaseem, A. and McAuley, J.H. (2021) Low Back Pain. JAMA, 326, 286.
https://doi.org/10.1001/jama.2020.19715 |
[3] | Parreira, P., Maher, C.G., Steffens, D., Hancock, M.J. and Ferreira, M.L. (2018) Risk Factors for Low Back Pain and Sciatica: An Umbrella Review. The Spine Journal, 18, 1715-1721. https://doi.org/10.1016/j.spinee.2018.05.018 |
[4] | Russo, F., De Salvatore, S., Ambrosio, L., Vadalà, G., Fontana, L., Papalia, R., Rantanen, J., Iavicoli, S. and Denaro, V. (2021) Does Workers’ Compensation Status Affect Outcomes after Lumbar Spine Surgery? A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 18, Article 6165.
https://doi.org/10.3390/ijerph18116165 |
[5] | Petrucci, G., Papalia, G.F., Russo, F., Vadalà, G., Piredda, M., De Marinis, M.G., Papalia, R. and Denaro, V. (2021) Psychological Approaches for the Integrative Care of Chronic Low Back Pain: A Systematic Review and Metanalysis. International Journal of Environmental Research and Public Health, 19, Article 60.
https://doi.org/10.3390/ijerph19010060 |
[6] | Hartvigsen, J., Hancock, M.J., Kongsted, A., Louw, Q., Ferreira, M.L., Genevay, S., Hoy, D., Karppinen, J., Pransky, G., Sieper, J., et al. (2018) What Low Back Pain Is and Why We Need to Pay Attention. The Lancet, 391, 2356-2367.
https://doi.org/10.1016/S0140-6736(18)30480-X |
[7] | Urits, I., Burshtein, A., Sharma, M., Testa, L., Gold, P.A., Orhurhu, V., Viswanath, O., Jones, M.R., Sidransky, M.A., Spektor, B., et al. (2019) Low Back Pain, a Comprehensive Review: Pathophysiology, Diagnosis, and Treatment. Current Pain and Headache Reports, 23, Article No. 23. https://doi.org/10.1007/s11916-019-0757-1 |
[8] | Kirnaz, S., Capadona, C., Wong, T., Goldberg, J.L., Medary, B., Sommer, F., McGrath Jr., L.B. and H?rtl, R. (2022) Fundamentals of Intervertebral Disc Degeneration. World Neuro-surgery, 157, 264-273.
https://doi.org/10.1016/j.wneu.2021.09.066 |
[9] | Mao, C.P., Wu, Y., Yang, H.J., Qin, J., Song, Q.C., Zhang, B., Zhou, X.Q., Zhang, L. and Sun, H.H. (2023) Altered Habenular Connectivity in Chronic Low Back Pain: An fMRI and Machine Learning Study. Human Brain Mapping, 44, 4407-4421. https://doi.org/10.1002/hbm.26389 |
[10] | Rüger, A., Laudner, K., Delank, K.S., Schwesig, R. and Steinmetz, A. (2023) Effects of Different Forms of Sensorimotor Training on Postural Control and Functional Status in Patients with Chronic Low Back Pain. Journal of Personalized Medicine, 13, Article 634. https://doi.org/10.3390/jpm13040634 |
[11] | Mao, C.P., Yang, H.J., Zhang, Q.J., Yang, Q.X. and Li, X.H. (2022) Altered Effective Connectivity within the Cingulo-Frontal-Parietal Cognitive Attention Net-works in Chronic Low Back Pain: A Dynamic Causal Modeling Study. Brain Imaging and Behavior, 16, 1516-1527. https://doi.org/10.1007/s11682-021-00623-4 |
[12] | Ng, S.K., Urquhart, D.M., Fitzgerald, P.B., Cicuttini, F.M., Kirkovski, M., Maller, J.J., Enticott, P.G., Rossell, S.L. and Fitzgibbon, B.M. (2021) Examining Resting-State Function-al Connectivity in Key Hubs of the Default Mode Network in Chronic Low Back Pain. Scandinavian Journal of Pain, 21, 839-846. https://doi.org/10.1515/sjpain-2020-0184 |
[13] | Hashmi, J.A., Baliki, M.N., Huang, L., Baria, A.T., Torbey, S., Hermann, K.M., Schnitzer, T.J. and Apkarian, A.V. (2013) Shape Shifting Pain: Chronification of Back Pain Shifts Brain Representation from Nociceptive to Emotional Circuits. Brain, 136, 2751-2768. https://doi.org/10.1093/brain/awt211 |
[14] | Chang, T.T., Chang, Y.H., Du, S.H., Chen, P.J. and Wang, X.Q. (2022) Non-Invasive Brain Neuromodulation Techniques for Chronic Low Back Pain. Frontiers in Molecular Neuroscience, 15, Article 1032617.
https://doi.org/10.3389/fnmol.2022.1032617 |
[15] | Van de Winckel, A., Zhang, L., Hendrickson, T., Lim, K.O., Mueller, B.A., Philippus, A., Monden, K.R., Oh, J., Huang, Q., Sertic, J.V.L., et al. (2023) Identifying Body Aware-ness-Related Brain Network Changes after Spring Forest Qigong? Practice or P.Volve Low-Intensity Exercise in Adults with Chronic Low Back Pain: A Feasibility Phase I Randomized Clinical Trial. medRxiv. https://doi.org/10.1101/2023.02.11.23285808 |
[16] | Migliorini, F., Maffulli, N., Baroncini, A., Eschweiler, J., Tingart, M. and Quack, V. (2021) Opioids for Chronic Low Back Pain Management: A Bayesian Network Me-ta-Analysis. Expert Review of Clinical Pharmacology, 14, 635-641.
https://doi.org/10.1080/17512433.2021.1903316 |
[17] | Amemiya, S., Takao, H. and Abe, O. (2023) Resting-State fMRI: Emerging Concepts for Future Clinical Application. Journal of Magnetic Resonance Imaging. https://doi.org/10.1002/jmri.28894 |
[18] | 陈诚, 王惠玲, 王高华, 蒋田仔, 周媛, 黄欢, 吴士豪, 荣蓓. 抑郁症与精神分裂症患者静息态功能磁共振成像与认知功能的差异[J]. 中华精神科杂志, 2020, 53(5): 377-383. |
[19] | Koopmans, P.J. and Yacoub, E. (2019) Strategies and Prospects for Cortical Depth Dependent T2 and T2* Weighted BOLD fMRI Studies. NeuroImage, 197, 668-676. https://doi.org/10.1016/j.neuroimage.2019.03.024 |
[20] | Raimondo, L., Oliveira, ?.A.F., Heij, J., Priovoulos, N., Kundu, P., Leoni, R.F. and van der Zwaag, W. (2021) Advances in Resting State fMRI Acquisitions for Functional Connectomics. NeuroImage, 243, Article ID: 118503.
https://doi.org/10.1016/j.neuroimage.2021.118503 |
[21] | Kang, L. and Wan, C. (2022) Application of Advanced Magnetic Resonance Imaging in Glaucoma: A Narrative Review. Quantitative Imaging in Medicine and Surgery, 12, 2106-2128. https://doi.org/10.21037/qims-21-790 |
[22] | Hojjati, S.H., Ebrahimzadeh, A., Khazaee, A. and Baba-jani-Feremi, A. (2018) Predicting Conversion from MCI to AD by Integrating rs-fMRI and Structural MRI. Computers in Biology and Medicine, 102, 30-39.
https://doi.org/10.1016/j.compbiomed.2018.09.004 |
[23] | Hojjati, S.H., Ebrahimzadeh, A. and Babajani-Feremi, A. (2019) Identification of the Early Stage of Alzheimer’s Disease Using Structural MRI and Resting-State fMRI. Frontiers in Neurology, 10, Article 904.
https://doi.org/10.3389/fneur.2019.00904 |
[24] | Pressl, C., Brandner, P., Schaffelhofer, S., Blackmon, K., Dugan, P., Holmes, M., Thesen, T., Kuzniecky, R., Devinsky, O. and Freiwald, W.A. (2019) Resting State Functional Connectivity Patterns Associated with Pharmacological Treatment Resistance in Temporal Lobe Epilepsy. Epilepsy Research, 149, 37-43.
https://doi.org/10.1016/j.eplepsyres.2018.11.002 |
[25] | Zang, Y., Jiang, T., Lu, Y., He, Y. and Tian, L. (2004) Re-gional Homogeneity Approach to fMRI Data Analysis. NeuroImage, 22, 394-400. https://doi.org/10.1016/j.neuroimage.2003.12.030 |
[26] | Jiang, L. and Zuo, X.N. (2016) Regional Homogeneity: A Multimodal, Multiscale Neuroimaging Marker of the Human Connectome. The Neuroscientist, 22, 486-505. https://doi.org/10.1177/1073858415595004 |
[27] | 陈俊, 刘波, 叶泳松, 李晓凡, 葛缅, 刘岘, 龙玉. 慢性腰背痛患者的脑静息态功能磁共振成像[J]. 中国医学影像技术, 2011, 27(6): 1116-1120.. |
[28] | 朱园园, 赵力聪, 赵洪增, 高燕, 李杰, 桑德恩. 腰椎间盘突出症慢性下腰痛患者脑局部一致性改变研究[J]. 新乡医学院学报, 2020, 37(8): 777-782. |
[29] | 陈加良, 刘国清, 陈俊, 刘岘, 李晓凡, 凌毅泰. 不同针刺镇痛疗法的静息态脑功能磁共振研究[J]. 中国老年学杂志, 2014(11): 2977-2979. |
[30] | 郭涛, 肖胜, 储伟, 李明. 不同针刺疗法镇痛在静息态脑功能磁共振局部一致性的变化及针刺镇痛机制的异同性[J]. 针灸临床杂志, 2015(8): 25-27. |
[31] | 邹燕, 汤伟军, 王松伟, 黄建华, 李霁. 慢性腰痛(cLBP)针刺“同病异治”效应的脑网络影像学的客观评价[J]. 复旦学报(医学版), 2019, 46(2): 167-173. |
[32] | 陈祁青, 赵继荣, 蔡毅, 陈文, 赵宁, 马同, 薛旭, 郭培尧, 张天龙, 杨涛, 等. 基于静息态功能磁共振形态学腰椎间盘突出症慢性下肢痛模型大鼠的实验研究[J]. 中国医学物理学杂志, 2022, 39(4): 430-435. |
[33] | Wang, J.J., Chen, X., Sah, S.K., Zeng, C., Li, Y.M., Li, N., Liu, M.Q. and Du, S.L. (2016) Amplitude of Low-Frequency Fluctuation (ALFF) and Fractional ALFF in Migraine Patients: A Resting-State Functional MRI Study. Clinical Radiology, 71, 558-564. https://doi.org/10.1016/j.crad.2016.03.004 |
[34] | 高燕, 赵力聪, 赵洪增, 董家文, 李杰, 朱园园, 桑德恩. 慢性腰腿痛患者左侧眶额皮层的静息态脑活动及功能连接异常[J]. 临床放射学杂志, 2021, 40(10): 1850-1855. |
[35] | 高燕, 赵力聪, 赵洪增, 朱园园, 李杰, 桑德恩. 慢性椎间盘源性下腰痛患者脑静息态低频振幅的改变[J]. 中国组织工程研究, 2021, 25(8): 1160-1165. |
[36] | Zhang, B., Jung, M., Tu, Y., Gollub, R., Lang, C., Ortiz, A., Park, J., Wilson, G., Gerber, J., Mawla, I., et al. (2019) Identifying Brain Regions Associated with the Neuropathology of Chronic Low Back Pain: A Resting-State Amplitude of Low-Frequency Fluctuation Study. British Journal of Anaesthesia, 123, e303-e311.
https://doi.org/10.1016/j.bja.2019.02.021 |
[37] | 李丽, 覃媛媛, 田甜, 方纪成, 朱文珍. 慢性下腰痛患者静息态功能磁共振成像脑活动差异研究[J]. 临床放射学杂志, 2019, 38(5): 768-772. |
[38] | Xiang, A., Yu, Y., Jia, X., Ma, H., Liu, H., Zhang, Y., Rong, J. and Liu, S. (2019) The Low-Frequency BOLD Signal Oscillation Response in the Insu-lar Associated to Immediate Analgesia of Ankle Acupuncture in Patients with Chronic Low Back Pain. Journal of Pain Research, 12, 841-850. https://doi.org/10.2147/JPR.S189390 |
[39] | Yu, S., Li, W., Shen, W., Edwards, R.R., Gol-lub, R.L., Wilson, G., Park, J., Ortiz, A., Cao, J., Gerber, J., et al. (2020) Impaired Mesocorticolimbic Connectivity Un-derlies Increased Pain Sensitivity in Chronic Low Back Pain. NeuroImage, 218, Article ID: 116969. https://doi.org/10.1016/j.neuroimage.2020.116969 |
[40] | Kim, J.A., Bosma, R.L., Hemington, K.S., Rogachov, A., Osborne, N.R., Cheng, J.C., Oh, J., Dunkley, B.T. and Davis, K.D. (2020) Cross-Network Coupling of Neural Oscilla-tions in the Dynamic Pain Connectome Reflects Chronic Neuropathic Pain in Multiple Sclerosis. NeuroImage: Clinical, 26, Article ID: 102230.
https://doi.org/10.1016/j.nicl.2020.102230 |
[41] | Kim, J.A., Bosma, R.L., Hemington, K.S., Rogachov, A., Osborne, N.R., Cheng, J.C., Oh, J., Crawley, A.P., Dunkley, B.T. and Davis, K.D. (2019) Neuropathic Pain and Pain Interference Are Linked to α-Band Slowing and Reduced β-Band Magnetoencephalography Activity within the Dynamic Pain Con-nectome in Patients with Multiple Sclerosis. Pain, 160, 187-197. https://doi.org/10.1097/j.pain.0000000000001391 |
[42] | Pei, Y., Peng, J., Zhang, Y., Huang, M. and Zhou, F. (2022) Aberrant Functional Connectivity and Temporal Variability of the Dynamic Pain Connectome in Patients with Low Back Related Leg Pain. Scientific Reports, 12, Article No. 6324. https://doi.org/10.1038/s41598-022-10238-4 |
[43] | Mao, C.P., Wilson, G., Cao, J., Meshberg, N., Huang, Y. and Kong, J. (2022) Abnormal Anatomical and Functional Connec-tivity of the Thalamo-Sensorimotor Circuit in Chronic Low Back Pain: Resting-State Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging Study. Neuroscience, 487, 143-154.
https://doi.org/10.1016/j.neuroscience.2022.02.001 |
[44] | Li, H., Song, Q., Zhang, R., Zhou, Y. and Kong, Y. (2021) Enhanced Temporal Coupling between Thalamus and Dorsolateral Prefrontal Cortex Mediates Chronic Low Back Pain and Depression. Neural Plasticity, 2021, Article ID: 7498714. https://doi.org/10.1155/2021/7498714 |
[45] | Tu, Y., Jung, M., Gollub, R.L., Napadow, V., Gerber, J., Ortiz, A., Lang, C., Mawla, I., Shen, W., Chan, S.T., et al. (2019) Abnormal Medial Prefrontal Cortex Functional Connectivity and Its Association with Clinical Symptoms in Chronic Low Back Pain. Pain, 160, 1308-1318. https://doi.org/10.1097/j.pain.0000000000001507 |
[46] | Isenburg, K., Mawla, I., Loggia, M.L., Ellingsen, D.M., Protsenko, E., Kowalski, M.H., Swensen, D., O’Dwyer-Swensen, D., Edwards, R.R., Napadow, V., et al. (2021) Increased Salience Network Connectivity following Manual Therapy Is Associated with Re-duced Pain in Chronic Low Back Pain Patients. The Journal of Pain, 22, 545-555.
https://doi.org/10.1016/j.jpain.2020.11.007 |
[47] | Shen, W., Tu, Y., Gollub, R.L., Ortiz, A., Napadow, V., Yu, S., Wilson, G., Park, J., Lang, C., Jung, M., et al. (2019) Visual Network Alterations in Brain Functional Connectivity in Chronic Low Back Pain: A Resting State Functional Connectivity and Machine Learning Study. NeuroImage: Clinical, 22, Article ID: 101775.
https://doi.org/10.1016/j.nicl.2019.101775 |
[48] | Loggia, M.L., Kim, J., Gollub, R.L., Vangel, M.G., Kirsch, I., Kong, J., Wasan, A.D. and Napadow, V. (2013) Default Mode Network Connectivity Encodes Clinical Pain: An Arterial Spin Labeling Study. Pain, 154, 24-33.
https://doi.org/10.1016/j.pain.2012.07.029 |
[49] | 和梦鑫, 平亮亮, 许秀峰. 基于图论的复杂脑网络分析在精神疾病中的研究进展[J]. 昆明医科大学学报, 2019, 40(5): 129-134. |
[50] | Telesford, Q.K., Joyce, K.E., Hayasaka, S., Burdette, J.H. and Laurienti, P.J. (2011) The Ubiquity of Small-World Networks. Brain Connectivity, 1, 367-375. https://doi.org/10.1089/brain.2011.0038 |
[51] | Liu, J., Zhang, F., Liu, X., Zhuo, Z., Wei, J., Du, M., Chan, Q., Wang, X. and Wang, D. (2018) Altered Small-World, Functional Brain Networks in Patients with Lower Back Pain. Science China Life Sciences, 61, 1420-1424.
https://doi.org/10.1007/s11427-017-9108-6 |
[52] | Loisel, P., Vachon, B., Lemaire, J., Durand, M.J., Poitras, S., Stock, S. and Tremblay, C. (2002) Discriminative and Predictive Validity Assessment of the Quebec Task Force Classi-fication. Spine, 27, 851-857.
https://doi.org/10.1097/00007632-200204150-00013 |
[53] | López-Solà, M., Woo, C.W., Pujol, J., Deus, J., Harri-son, B.J., Monfort, J. and Wager, T.D. (2017) Towards a Neurophysiological Signature for Fibromyalgia. Pain, 158, 34-47. https://doi.org/10.1097/j.pain.0000000000000707 |
[54] | L?tsch, J. and Ultsch, A. (2018) Machine Learning in Pain Research. Pain, 159, 623-630.
https://doi.org/10.1097/j.pain.0000000000001118 |