|
Pure Mathematics 2023
具奇异敏感的趋化模型解的整体有界性
|
Abstract:
本文研究齐次Neumann边界条件下的具奇异敏感的抛物–椭圆趋化模型:,
,其中Ω??为有界区间,α,β,χ > 0。当
时,模型存在整体有界的古典解。
This article studies a parabolic-elliptical chemotaxis model with singular sensitivity under homo-geneous Neumann boundary conditions:, where Ω??, α,β,χ > 0. It’s proved that the classical solution of
is globally bounded.
[1] | Nagai, T. and Senba, T. (1998) Global Existence and Blow-Up of Radial Solutions to a Parabolic-Elliptic System of Chemotaxis. Advances in Mathematical Sciences and Applications, 8, 145-156. |
[2] | Fujie, K., Winkler, M. and Yokota, T. (2015) Boundedness of Solutions to Parabolic-Elliptic Keller-Segel Systems with Signal-Dependent Sensitivity. Mathematical Methods in the Applied Sciences, 38, 1212-1224.
https://doi.org/10.1002/mma.3149 |
[3] | Viglialoro, G. and Woolley, T.E. (2020) Solvability of a Keller-Segel System with Signal-Dependent Sensitivity and Essentially Sublinear Production. Applicable Analysis, 99, 2507-2525.
https://doi.org/10.1080/00036811.2019.1569227 |
[4] | Liu, D. (2020) Global Solutions in a Fully Parabolic Chemotaxis System with Singular Sensitivity and Nonlinear Signal Production. Journal of Mathematical Physics, 61, Article ID: 021503. https://doi.org/10.1063/1.5111650 |
[5] | Fujie, K., Winkler, M. and Yokota, T. (2014) Blow-Up Prevention by Logistic Sources in a Parabolic-Elliptic Keller-Segel System with Singular Sensitivity. Nonlinear Analysis: Theory, Methods & Applications, 109, 56-71.
https://doi.org/10.1016/j.na.2014.06.017 |
[6] | Winkler, M. (2010) Aggregation vs. Global Diffusive Behavior in the Higher-Dimensional Keller-Segel Model. Journal of Differential Equations, 12, 2889-2905. https://doi.org/10.1016/j.jde.2010.02.008 |