全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中考路上的“勾股树”与“赵爽弦图”
The “Pythagorean Tree” and “Zhao Shuang’s String Diagram” in the Middle School Entrance Examination

DOI: 10.12677/PM.2023.1311329, PP. 3176-3184

Keywords: 勾股定理,数学文化,赵爽弦图,勾股树
Pythagorean Theorem
, Mathematical Culture, Zhao Shuang’s String Diagram, The Pythagorean Tree

Full-Text   Cite this paper   Add to My Lib

Abstract:

庞加莱说:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状”。勾股定理的价值是非凡的,它被誉为“几何学的基石”,是欧式几何的基础定理。在日常教学中,以数学文化为入口,学习勾股定理。本文以勾股定理知识为基础,针对其中的“赵爽弦图”和“毕达哥拉斯树”两个知识点为起点,进行题目的对比分析,并给出教学建议。
Henri Poincaré say that if we want to see the future of mathematics, the proper way is to study the history and present state of the science. The value of Pythagorean Theorem is extraordinary, which is called “the cornerstone of geometry”. It’s the fundamental theorem of Euclidean geometry. In the daily teaching, we often learn Pythagorean Theorem with the entrance of mathematical culture. In this paper, by taking the more difficult questions about Pythagorean Theorem in the secondary school entrance examination as an example, we give some teaching advices by using “Zhao Shuang’s string diagram” and “Pythagoras tree” for topic analysis.

References

[1]  教育部. 义务教育数学课程标准(2022年版) [M]. 北京: 北京师范大学出版社, 2022.
[2]  董文峰. 预设促思生成资源, 课堂深学灵动发展——素养导向下“勾股定理”的生成教学[J]. 中学数学, 2023(12): 32-35.
[3]  岳增成. 中国HPM发展之路[J]. 教学月刊小学版(数学), 2019(11): 6-10.
[4]  曹雪飞. 长在中考试卷上的“勾股树” [J]. 中学生数理化(八年级数学) (配合人教社教材), 2023(3): 17-18.
[5]  张春华. “勾股定理”基本图形美学赏析——以人教版初中数学为例[J]. 数学教学通讯, 2018(5): 30-31.
[6]  赵彪, 段瑞峰. 中国古算对于当代文化数学的借鉴——从勾股定理例说“文化数学” [J]. 中学数学教学, 2023(3): 30-33.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133