|
贵州区域多次飞机颠簸事件成因分析
|
Abstract:
在扰动气流或不均匀空气动力冲击下,飞机颠簸事件层出不穷,直接诱发左右摇晃、上下抛掷、前后颠顿及局部抖动等不良乘客体验屡见不鲜,严重情况下致使仪表不准、操作困难由潜至显的威胁极大提升。为确保飞机运行安全,颠簸成因和发育规律先行探明尤为关键,故本研究立足于贵州复杂地形、地貌、气象等区域特色,结合地区航空器所测数据,基于ERA5理论框架对发生颠簸的季节特征及物理量场分布特征进行研讨,结果表明:(1) 冬春季节出现颠簸的概率远大于夏秋两季,1月、2月、3月出现颠簸的概率大于其它月份;(2) 2023年2月3日多次颠簸原因属于高空急流型,颠簸位置主要集中在急流北侧以及急流中心;(3) 颠簸发生之际,大气层对流不稳定,中高层干冷,中低层暖湿,在冷暖平流交汇区内颠簸现象颇为明显;(4) 颠簸位置与正涡度区、涡度梯度大值区、负散度梯度大值区匹配度较高。
Under the impact of disturbed airflow or uneven aerodynamics, aircraft turbulence events emerge in an endless stream, which directly induce bad passenger experiences such as left and right shaking, up and down throwing, front and back tossing, and local jitter. In severe cases, the threat of inaccurate instruments and operational difficulties from sub-to-significant is greatly enhanced. In order to ensure the safety of aircraft operation, it is particularly important to explore the causes and development rules of turbulence in advance. Therefore, based on the regional characteristics of complex topography, geomorphology and meteorology in Guizhou, combined with the measured data of regional aircraft, this study discusses the seasonal characteristics and physical quantity field distribution characteristics of turbulence based on the ERA5 theoretical framework. The results show that: (1) The probability of turbulence in winter and spring is much greater than that in summer and autumn, and the probability of turbulence in January, February and March is greater than that in other months. (2) The causes of several turbulences on February 3, 2023 belong to the upper-level jet stream type, and the turbulences are mainly concentrated on the north side of the jet stream and the center of the jet stream; (3) When the turbulence occurs, the convection in the atmosphere is unstable, the middle and upper layers are dry and cold, and the middle and lower layers are warm and humid. The turbulence phenomenon is quite obvious in the cold and warm advection intersection area. (4) The turbulence position has a high matching degree with the positive vorticity area, the large vorticity gradient area and the large negative divergence gradient area.
[1] | Sharman, R., Brown, B.G. and Dettling, S. (2000) Preliminary Results of the NCAR Integrated Turbulence Fore-casting Algorithm (ITFA) to Forecast Cat. (Pre-Prints) |
[2] | 王淑翠. 飞机颠簸产生的可能机制及其在天气预测上的应用[D]: [硕士学位论文]. 青岛: 中国海洋大学, 2013. |
[3] | 王洪芳, 金维明, 王炳仁, 等. 飞机颠簸及预报方法研究[J]. 气象科技, 1997, 25(1): 29-34. |
[4] | 周林, 黄超凡, 钟中, 等. 一次南海高空晴空颠簸事件的形成机制研究[J]. 热带气象学报, 2016, 32(4): 570-576. |
[5] | 蒋一柅. 晴空颠簸对于民航的危害与应对[J]. 科技风, 2013(16): 209-210. |
[6] | Colson, D. and Panofsky, H.A. (2010) An Index of Clear Air Turbulence. Quarterly Journal of the Royal Meteorological Society, 91, 507-513. https://doi.org/10.1002/qj.49709139010 |
[7] | Gultepe, I. and Starr, Do. (1995) Dynamical Structure and Tur-bulence in Cirrus Clouds: Aircraft Observations during FIRE. Journal of the Atmospheric Sciences, 52, 4159-4182.
https://doi.org/10.1175/1520-0469(1995)052<4159:DSATIC>2.0.CO;2 |
[8] | 李子良, 陈会芝. 飞机颠簸的气象条件分析[J]. 高原山地气象研究, 1999, 19(2): 22-23. |
[9] | 邹波. 地面加热对飞机颠簸影响的动力学初步分析[J]. 大气科学学报, 2004, 27(4): 527-531. |
[10] | 李子良, 黄仪方. 重力惯性波及其不稳定——急流附近飞机颠簸产生的可能机制[J]. 高原气象, 2008, 27(4): 859-865. |
[11] | 李子良, 黄仪方. 大气湍流引起飞机颠簸的理论分析和数值试验[J]. 中国海洋大学学报, 2008, 38(6): 889-894. |
[12] | 孙智博. 我国产生飞机颠簸的特殊云状及其分布规律分析[D]: [硕士学位论文]. 广汉: 中国民用航空飞行学院, 2011. |
[13] | Williams, P.D. and Joshi, M.M. (2013) Intensification of Winter Transatlantic Aviation Turbulence in Response to Climate Change. Nature Climate Change, 3, 644-648. https://doi.org/10.1038/nclimate1866 |
[14] | Williams, P.D. (2017) Increased Light, Moderate, and Severe Clear-Air Turbulence in Response to Climate Change. Advances in Atmospheric Sciences, 34, 576-586. https://doi.org/10.1007/s00376-017-6268-2 |