全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

机器人的力控制技术研究及应用进展
Research and Application Progress of Robot Force Control Technology

DOI: 10.12677/AIRR.2023.124032, PP. 292-300

Keywords: 力控制技术,机器人控制,柔顺性,运动控制
Force Control Technology
, Robot Control, Compliance, Motion Control

Full-Text   Cite this paper   Add to My Lib

Abstract:

力控制目的是使机器人在工作过程中具有柔顺性。作为机器人运动控制的关键环节,力控制技术研究在机器人领域占有重要的地位。本文系统的总结了机器人力控制领域提出的经典理论和研究成果,首先,针对四种典型力控制方法的基本原理、特点以及国内外研究进展进行了归纳和总结;其次,介绍了力控制技术在工业、航空航天、医疗等领域应用的典型案例;最后,对力控制技术在机器人控制领域中的发展方向进行了展望。
The purpose of force control is to make the robot have the compliance in the working process. As the key link of robot motion control, force control technology plays an important role in the field of robot. This paper systematically summarizes the classical theories and research achievements in the field of robot force control. Firstly, the basic principles, characteristics and research progress of the four typical force control methods are summarized; secondly, typical cases of application of force control technology in industry, aerospace, medical and other fields are introduced; finally, the development direction of force control technology in the field of robot control is prospected.

References

[1]  Kim, H.S., Kim, I.M., Cho, C.N., et al. (2012) Safe Joint Module for Safe Robot Arm Based on Passive and Active Compliance Method. Mechatronics, 22, 1023-1030.
https://doi.org/10.1016/j.mechatronics.2012.08.007
[2]  汪坤. 多关节串联工业机器人的力位柔顺控制技术研究[D]: [硕士学位论文]. 绵阳: 西南科技大学, 2017.
[3]  Chung, J.C.H. and Leininger, G.G. (1990) Task-Level Adaptive Hybrid Manipulator Control. International Journal of Robotics Research, 9, 63-73.
https://doi.org/10.1177/027836499000900304
[4]  穆朝絮, 张勇, 余瑶, 等. 基于自适应动态规划的航空航天飞行器鲁棒控制研究综述[J]. 空间控制技术与应用, 2019, 45(4): 71-79.
[5]  李超. 机械臂末端力/位置混合控制方法研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工程大学, 2015.
[6]  Miyamura, A. and Kimura, H. (2002) Stability of Feedback Error Learning Scheme. Systems & Control Letters, 45, 303-316.
https://doi.org/10.1016/S0167-6911(01)00191-8
[7]  Huang, S.J., Liu, Y.C. and Hsiang, S.H. (2013) Robotic End-Effector Impedance Control without Expensive Torque/Force Sensor. International Journal of Mechanical and Mechatronics Engineering, 7, 1446-1453.
[8]  Duan, J., Gan, Y., Chen, M., et al. (2018) Adaptive Variable Impedance Control for Dynamic Contact Force Tracking in Uncertain Environment. Robotics and Autonomous Systems, 102, 54-65.
https://doi.org/10.1016/j.robot.2018.01.009
[9]  潘冬, 李大明, 胡成威, 等. 一种基于位置阻抗的机臂抓飞行器控制方法[J]. 载人航天, 2018, 24(3): 308-312.
[10]  Wang, Y., Sun, T. and Yang, J. (2022) Super-Twisting Nonsingular Terminal Sliding Mode-Based Robust Impedance Control of Robots. Complexity, 2022, Article ID: 9263699.
https://doi.org/10.1155/2022/9263699
[11]  Mills, J.K. and Goldenberg, A.A. (1989) Force and Position Control of Manipulators during Constrained Motion Tasks. IEEE Transactions on Robotics and Automation, 5, 30-46.
https://doi.org/10.1109/70.88015
[12]  李二超. 未确知环境下机器人力控制技术研究[D]: [博士学位论文]. 兰州: 兰州理工大学, 2011.
[13]  Zhang, H., Li, L., Zhao, J., et al. (2021) The Hybrid Force/Position Anti-Disturbance Control Strategy for Robot Abrasive Belt Grinding of Aviation Blade Base on Fuzzy PID Control. The International Journal of Advanced Manufacturing Technology, 114, 3645-3656.
https://doi.org/10.1007/s00170-021-07122-2
[14]  Wang, Z., Zou, L., Su, X., et al. (2021) Hybrid Force/Position Control in Workspace of Robotic Manipulator in Uncertain Environments Based on Adaptive Fuzzy Control. Robotics and Autonomous Systems, 145, Article ID: 103870.
https://doi.org/10.1016/j.robot.2021.103870
[15]  Kumar, N. and Rani, M. (2021) Neural Network-Based Hybrid Force/Position Control of Constrained Reconfigurable Manipulators. Neurocomputing, 420, 1-14.
https://doi.org/10.1016/j.neucom.2020.09.009
[16]  殷文喆, 练达芃, 李凯悦, 等. 基于分段自适应的机械臂力/位混合控制[J/OL]. 北京航空航天大学学报: 1-9.
https://doi.org/10.13700/j.bh.1001-5965.2022.0955, 2023-09-13.
[17]  尤子成, 王志刚, 郭宇飞. 振动基柔顺驱动打磨机器人的力/位混合控制研究[J]. 机床与液压, 2022, 50(15): 8-14.
[18]  Suba, E., Turker, T. and Akgün, O. (2018) A Lyapunov Based Model Reference Adaptive Control of a Quadrotor. 2017 10th International Conference on Electrical and Electronics Engineering, Bursa, 30 November-2 December 2017, 732-736.
[19]  Tutsoy, O. and Barkana, D.E. (2021) Model Free Adaptive Control of the Under-Actuated Robot Manipulator with the Chaotic Dynamics. ISA Transactions, 118, 106-115.
[20]  郑先杰, 丁萌, 武海雷, 等. 线驱连续型机械臂无模型自适应控制[J]. 华中科技大学学报(自然科学版), 2023, 51(2): 116-121.
[21]  李振, 赵欢, 王辉, 等. 机器人磨抛加工接触稳态自适应力跟踪研究[J]. 机械工程学报, 2022, 58(9): 10.
[22]  王邢波, 陆闯, 张岩. 基于RBF神经网络的灵巧手指自适应跟踪控制[J]. 组合机床与自动化加工技术, 2022, 579(5): 75-78.
[23]  顾振宇, 李斌. 柔性机械臂系统双时标模型的H∞鲁棒控制[J]. 机械设计与制造, 2023(3): 58-62.
[24]  Aghabalaie, P., Hosseinzadeh, M., Talebi, H.A., et al. (2010) Nonlinear Robust Control of a Biped Robot. 2010 IEEE International Symposium on Industrial Electronics, Bari, 4-7 July 2010, 1907-1912.
https://doi.org/10.1109/ISIE.2010.5637535
[25]  张琪, 王堆, 王延延. 基于奇异摄动的柔性机械臂时标分离鲁棒控制方法[P]. 中国专利, CN201811581068.8 2023-09-13.
[26]  张泽坤, 国凯, 孙杰. 基于扰动观测器的工业机器人高精度闭环鲁棒控制[J]. 机械工程学报, 2022, 58(14): 62-70.
[27]  Peng, J., Ma, X., Meng, F., et al. (2017) Robust Quadratic Stabilization Tracking Control for Mobile Robot with Nonholonomic Constraint. 2017 International Conference on Robotics and Automation Sciences, Hong Kong, 26-29 August 2017, 11-15.
https://doi.org/10.1109/ICRAS.2017.8071907
[28]  楚雪平, 王晓玲. 采用神经网络的工业机器人双臂鲁棒控制方法[J]. 现代制造工程, 2022, No. 506(11): 41-47.
[29]  Jung, S. (2018) Improvement of Tracking Control of a Sliding Mode Controller for Robot Manipulators by a Neural Network. International Journal of Control, Automation and Systems, 16, 937-943.
https://doi.org/10.1007/s12555-017-0186-z
[30]  Xu, X., Zhu, D., Zhang, H., et al. (2019) Application of Novel Force Control Strategies to Enhance Robotic Abrasive Belt Grinding Quality of Aero-Engine Blades. Chinese Journal of Aeronautics, 32, 2368-2382.
https://doi.org/10.1016/j.cja.2019.01.023
[31]  丁毓峰, 闵新普. 曲面零件抛光机器人的力/位混合控制方法[J]. 系统仿真学报, 2020, 32(5): 817-825.
[32]  Dong, J. and Xu, J. (2020) Physical Human-Robot Interaction Force Control Method Based on Adaptive Variable Impedance. Journal of the Franklin Institute, 357, 7864-7878.
https://doi.org/10.1016/j.jfranklin.2020.06.007
[33]  吴锡洲. 基于力协调的空间机械臂主从控制系统设计与分析[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2018.
[34]  Haiping, A., Li, C. and Yu, X.Y. (2020) Passivity-Based Force/Position Active Disturbance Rejection Control of Dual-Arm Space Robot Clamping Capture Spacecraft. IFToMM Conference on Mechanisms, Transmissions and Applications, Dalian, 9-11October 2019, 397-408.
[35]  姚勇, 丁力, 王尧尧. 考虑关节柔性的绳驱动空中机械臂关节空间鲁棒控制[J]. 控制与决策, 2023, 38(4): 971-979.
[36]  Beretta, E., Nessi, F., Ferrigno, G., et al. (2016) Enhanced Torque-Based Impedance Control to Assist Brain Targeting during Open-Skull Neurosurgery: A Feasibility Study. The International Journal of Medical Robotics and Computer Assisted Surgery, 12, 326-341.
https://doi.org/10.1002/rcs.1690
[37]  Zheng, G., Lei, J., Hu, L., et al. (2021) Fuzzy Adaptive Sliding Mode Impedance Control of Fracture Reduction Robot. IEEE Access, 9, 113653-113665.
https://doi.org/10.1109/ACCESS.2021.3099692
[38]  Guo, Y., Wang, H., Tian, Y., et al. (2022) Position/Force Evaluation-Based Assist-as-Needed Control Strategy Design for Upper Limb Rehabilitation Exoskeleton. Neural Computing & Applications, 34, 13075-13090.
https://doi.org/10.1007/s00521-022-07180-x
[39]  程俊, 刘滨. 基于数控系统的桁架机械手并行控制器开发[J]. 机床与液压, 2021, 49(10): 108-112.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133