This article systematically delves into a comprehensive analysis of the latest and most advanced techniques for the assessment of slope stability. It particularly focuses on strategies aimed at enhancing slope stability in road construction. In addition to this analysis, the article presents an illustrative case study centered on the Toffo-Lalo Road Project. The core objective of this paper is to scrutinize the stability of large embankments in road construction, with a specific emphasis on the development and asphalt overlay of the Toffo-Lalo road. This scrutiny is conducted through the utilization of stability calculation software, GEOSTUDIO2018, specifically its SLOPE/W module. Within this framework, a detailed model of the cutbank located at KP1+750-2+250 was meticulously developed. This model takes into account the physical-mechanical characteristics of the soil at the site, as well as the topographic layout. Its attributes include a cohesion value of 11.3 Kpa, a density of 16.57 KN/m3, and a friction angle of 27˚. The modeling results, employing the Morgenstern-Price method—an approach renowned for its adherence to equilibrium conditions and provision of precise results—conclude that the safety coefficient (Fs = 1.429) prior to any reinforcement signifies a critical state of slope stability. To address this, the article explores the implementation of reinforcement techniques, particularly focusing on rigid inclusions like nailing and piles. The modeling exercises reveal a noteworthy enhancement in the safety coefficient (Fs) post-reinforcement. Furthermore, the article undertakes a parametric study to optimize the reinforcement strategies. This analysis highlights that anchoring at 0˚ downward relative to the horizontal plane and employing a pile angle of 90˚ represent the most favorable approaches. These measures yield safety coefficients of 3.60 and 2.34, respectively, indicating substantially improved slope stability.
References
[1]
Boudlal, O. (2013) Etude expérimentale du comportement mécanique des fines dans la stabilité des talus et des foundations. Ph.D. Thesis, Université Mouloud Mammeri, Tizi-Ouzou. https://dspace.ummto.dz/items/cbc3ff5f-0381-47e9-9010-0aa82d23b1a1
[2]
Benamara, F.Z. and Belabed, L. (2016) Analyse de la stabilité d’un talus routier renforcé par tirant d’ancrage par la méthode des éléments finis. Academic Journal of Civil Engineering, 34, 481-487. https://doi.org/10.26168/ajce.34.1.59
[3]
Guettouche, R. (2017) L’Analyse à priori de la stabilité au niveau de la carrière CHOUF AMMAR-M’SILA. Ph.D. Thesis, Ecole Nationale Supérieure des Mines et de la Métallurgie. Amar Laskri, Annaba.
[4]
Djerbal, L. (2013) Analyse des mécanismes de déformation et de la rupture progressive du verssant instable d’Ain El Hammam. Ph.D. Thesis, Université Mouloud Mammeri, Tizi-Ouzou. https://dspace.ummto.dz/items/15144e04-ec6d-47d8-9c0c-313d6091002a
[5]
Benaissa, A. and Bellouche, M.A. (1999) Propriétés géotechniques de quelques formations géologiques propices aux glissements de terrains dans l’agglomération de Constantine (Algérie) [Geotechnical Properties of Some Landslide-Prone Geological Formations in the Urban Area of Constantine (Algeria)]. Bulletin of Engineering Geology and the Environment, 57, 301-310. https://doi.org/10.1007/s100640050049
[6]
Belouar, A. (2005) Topologie, prévention du risque et cartographie géotechnique en site urbain-cas de la ville de Constantine. Master’s Thesis, Université Mentouri Constantine, Constantine.
[7]
Touitou, D, (2002) Apport de la modélisation et de l’instrumentation dans l’analyse de la stabilité et de la déformation à long terme d’un massif granitique: Application aux talus de grande hauteur de l’écluse à bateaux permanente au barrage des Trois Gorges (Chine). Master’s Thesis, Ecole des Ponts ParisTech, Paris.
[8]
Khebizi, M. (2006) Influence des glissements de terrain de la cité Boussouf (Constantine) sur les constructions. Master’s Thesis, Université Mohamed Khider-Biskra, Biskra. http://thesis.univ-biskra.dz/id/eprint/1735
[9]
Agbelele, K.J., Adeoti, G.O., Agossou, D.Y. and Aïsse, G.G. (2023) Study of Slope Stability Using the Bishop Slice Method: An Approach Combining Analytical and Numerical Analyses. Open Journal of Applied Sciences, 13, 1446-1456. https://doi.org/10.4236/ojapps.2023.138115
[10]
Agbelele, K.J., Houehanou, E.C., Ahlinhan, M.F., Aristide, H. C., et al. (2023) Assessment of Slope Stability by the Fellenius Slice Method: Analytical and Numerical Approach. World Journal of Advanced Research and Reviews, 18, 1205-1214. https://doi.org/10.30574/wjarr.2023.18.2.0874
[11]
Duncan, J.M. (1996) State of the Art: Limit Equilibrium and Finite-Element Analysis of Slopes. Journal of Geotechnical Engineering, 122, 577-596. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:7(577)
[12]
Baker, R. (1980) Determination of the Critical Slip Surface in Slope Stability Computations. International Journal for Numerical and Analytical Methods in Geomechanics, 4, 333-359. https://doi.org/10.1002/nag.1610040405
[13]
Celestino, T.B. and Duncan, J.M. (1981) Simplified Search for Non-Circular Slip Surface. Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, 15-19 June 1981, 391-394.
[14]
Greco, V.R. and Gulla, G. (1985) Slip Surface Search in Slope Stability Analysis. Rivista Italiana di Geotecnica, 19, 189-198. https://associazionegeotecnica.it/wp-content/uploads/2010/09/RIG_1985_4_189.pdf
[15]
Nguyen, V.U. (1985) Determination of Critical Slope Failure Surfaces. Journal of Geotechnical Engineering, 111, 238-250. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:2(238)
[16]
Li, K.S. and White, W. (1987) Rapid Evaluation of the Critical Slip Surface in Slope Stability Problems. International Journal for Numerical and Analytical Methods in Geomechanics, 11, 449-473. https://doi.org/10.1002/nag.1610110503
[17]
Chen, Z.Y. (1992) Random Trials Used in Determining Global Minimum Factors of Safety of Slopes. Canadian Geotechnical Journal, 29, 225-233. https://doi.org/10.1139/t92-026
[18]
Greco, V.R. (1987) Efficient Monte Carlo Technique for Locating Critical Slip Surface. Journal of Geotechnical Engineering, 122, 517-525. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:7(517)
[19]
Malkawi, A.I.H., Hassan, W.F. and Sarma, S.K. (2001) Global Search Method for Locating General Slip Surface Using Monte Carlo Techniques. Journal of Geotechnical and Geoenvironmental Engineering, 127, 688-698. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:8(688)
[20]
Cheng, Y.M. (2003) Location of Critical Failure Surface and Some Further Studies on Slope Stability Analysis. Computers and Geotechnics, 30, 255-267. https://doi.org/10.1016/S0266-352X(03)00012-0
[21]
Fellenius, W. (1927) Erdstatische Berechnungen mit Reibung und Kohäsion (Adhäsion) und unter Annahme kreiszylindrischer Gleitflächen. W. Ernst & Sohn, Hoboken.
[22]
Bishop, A.W. (1955) The Use of the Slip Circle in the Stability Analysis of Slopes. Geotechnique, 5, 7-17. https://doi.org/10.1680/geot.1955.5.1.7
[23]
Lowe, J. and Karafiath, L. (1960) Stability of Earth Dams upon Drawdown. https://cir.nii.ac.jp/crid/1571980074835346688
[24]
US Army Corps of Engineers (1970) Stability of Earth and Rock-Fill Dams. United States Army Engineer Waterways Experiment Station, Vicksburg.
[25]
Morgenstern, N.R. and Price, V.E. (1965) The Analysis of the Stability of General Slip Surfaces. Geotechnique, 15, 79-93. https://doi.org/10.1680/geot.1965.15.1.79
[26]
Spencer, E. (1967) A Method of Analysis of the Stability of Embankments Assuming Parallel Inter-Slice Forces. Geotechnique, 17, 11-26. https://doi.org/10.1680/geot.1967.17.1.11
[27]
Janbu, N. (1968) Slope Stability Computations, Soil Mechanics and Foundation Engineering Report. Technical University of Norway, Trondheim.
[28]
Duncan, J.M., Buchignani, A.L. and DeWet, M. (1987) An Engineering Manual for Slope Stability Studies. Department of Civil Engineering, Geotechnical Engineering, Virginia Polytechnic Institute and State University, Blacksburg.
[29]
Alexis, A. (1987) Etude geotechnique et sedimentologique de souilles et chenaux de la rade de lorient: Contribution a la stabilite des sols immerges. https://www.theses.fr/1987NANT2033
[30]
M’zoughem, K. and Chenafa, W. (2006) Etude géotechnique de la stabilité des talus dans la carrière de Ain El Kebira (Setif). Master’s Thesis, University of Ferhat Abbas, Setif.
[31]
Haoues, N. and Loucif, S. (2017) Etude de stabilité d’une Talus. Real Case: Ciloc-Constantine City. Master’s Thesis, Larbi Ben M'hidi University of Oum El Bouaghi, Oum El Bouaghi. http://bib.univ-oeb.dz:8080/jspui/bitstream/123456789/7438/1/HAOUES%20NASSIMA-LOUCIF%20SARA.pdf