全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Standardized Baseflow Drought Index Comparison to SPEI in High Baseflow Streams

DOI: 10.4236/jwarp.2023.1511031, PP. 557-580

Keywords: SPEI, Baseflow, Drought Indices, Streamflow

Full-Text   Cite this paper   Add to My Lib

Abstract:

Increased use of streamflow, most importantly minimum flow/baseflow data should be incorporated into drought indices, especially in regions where streams have a high baseflow component. Standard departure for streamflow (SDSF) and standard departure for baseflow (SDBF) were compared to the standardized precipitation and evapotranspiration index (SPEI) drought index values for 17 baseflow-dominated watersheds in the northern, central, and southern regions of Wisconsin. For each watershed, comparisons of SDSF, SDBF, and SPEI time series (for 1, 3, and 12-month time scales) were evaluated using correlation, run lengths of negative and positive values, sign congruence, and Mann-Kendall trend test. In general, SDBF performed better than SDSF for longer time scales. Trends of wetness appear to be distinguished earlier in SDBF compared to SDSF and SPEI-1, SPEI-3, and SPEI-12. The results of this study are consistent with regional statewide climate studies on precipitation and changes in precipitation intensity. This study highlights how standardized baseflow data are robust and compare to SPEI 12-month time scales.

References

[1]  Wilhite, D. and Glantz, M. (1985) Understanding: The Drought Phenomenon: The Role of Definitions. Water International, 10, 111-120.
https://doi.org/10.1080/02508068508686328
[2]  Redmond, K. (2002) The Depiction of Drought: A Commentary. Bulletin of the American Meteorological Society, 83, 1143-1147.
[3]  Svoboda, M., Fuchs, B., World Meteorological Organization (WMO) and Global Water Partnership (GWP) (2016) Handbook of Drought Indicators and Indices. Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools and Guidelines Series 2.
https://public.wmo.int/en/resources/library/handbook-of-drought-indicators-and-indices
[4]  Bachmair, S., Stahl, K., Collins, K., Hannaford, J., Acreman, M., Svoboda, M., Knutson, C., Smith, K., Wall, N., Fuchs, B., Crossman, N. and Overton I. (2016) Drought Indicators Revisted: The Need for a Wider Consideration of Environment and Society. Wires Water, 3, 516-536.
https://doi.org/10.1002/wat2.1154
[5]  AghaKouchak, A., Mirchi, A., Madani, K., Baldassarre, G., Nazemi A., Alborzi, A., Anjileli, H., Azarderakhsh, M., Chiang, F., Hassanzadeh, E., Huning, L., Mallakpour, I., Martinez, A., Mazdiyasni, O., Moftakhari, H., Norouzi, H., Sadegh, M., Sadeqi, D., Van Loon, A. and Wanders, N. (2021) Anthropogenic Drought: Definition, Challenges, and Opportunities. Reviews of Geophysics, 59, e2019RG000683.
https://doi.org/10.1029/2019RG000683
[6]  Trenberth, K., Dai, A., van der Schrier, G., Jones, P., Barichivich, J., Briffa, K. and Sheffield, J. (2013) Global Warming and Changes in Drought. Nature Climate Change, 4, 17-22.
https://doi.org/10.1038/nclimate2067
[7]  Balti, H., Abbes, A., Mellouli, N., Farah, I., Sang, Y. and Lamolle, M. (2020) A Review of Drought Monitoring with Big Data: Issues, Methods, Challenges and Research Directions. Ecological Informatics, 60, Article ID: 101136.
https://doi.org/10.1016/j.ecoinf.2020.101136
[8]  Lloyd-Hughes, B. (2013) The Impracticality of a Universal Drought Definition. Theoretical and Applied Climatology, 117, 607-611.
https://doi.org/10.1007/s00704-013-1025-7
[9]  Hao, Z. and Singh, V. (2015) Drought Characterization from a Multivariate Perspective: A Review. Journal of Hydrology, 527, 668-678.
https://doi.org/10.1016/j.jhydrol.2015.05.031
[10]  Crausbay, S., Ramirez, A., Carter, S., Cross, M., Hall, K., Bathke, D., Betancourt, J., Colt, S., Cravens, A., Dalton, M., Dunham, J., Hay, L., Hayes, M., McEvoy, J., McNutt, C., Moritz, M., Nislow, K., Raheem, N. and Sanford, T. (2017) Defining Ecological Drought for the Twenty-First Century. Bulletin of the American Meteorological Society, 98, 2543-2550.
https://doi.org/10.1175/BAMS-D-16-0292.1
[11]  Barlow, P., Cunningham, W., Zhai, T. and Gray, M. (2015) U.S. Geological Survey Groundwater Toolbox, a Graphical and Mapping Interface for Analysis of Hydrologic Data (Version 1.0): User Guide for Estimation of Base Flow, Runoff, and Groundwater Recharge from Streamflow Data. U.S. Geological Survey Techniques and Methods.
https://doi.org/10.3133/tm3B10
[12]  USGS (US Geological Survey) (2023) Web Interface: U.S. Geological Survey National Water Information System Web Site.
http://waterdata.usgs.gov/nwis/
[13]  McKee, T.B., Doesken, N.J. and Kleist, J. (1993) The Relationship of Drought Frequency and Duration to Time Scales. 8th Conference on Applied Climatology, Anaheim, 17-22 January 1993, 179-184.
[14]  Vicente-Serrano S., Beguería S. and López-Moreno, J. (2010) A Multi-Scalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate, 23, 1696-1718.
http://digital.csic.es/handle/10261/22405
https://doi.org/10.1175/2009JCLI2909.1
[15]  Vicente-Serrano, S.M., Beguería, S., López-Moreno, J., Angulo, M. and Kenawy, E. (2010) A New Global 0.5° Gridded Dataset (1901-2006) of a Multiscalar Drought Index: Comparison with Current Drought Index Datasets Based on the Palmer Drought Severity Index. Journal of Hydrometeorology, 11, 1033-1043.
http://digital.csic.es/handle/10261/23906
https://doi.org/10.1175/2010JHM1224.1
[16]  Beguería, S., Vicente-Serrano, S., Reig, F. and Latorre, B. (2014) Standardized Precipitation Evapotranspiration Index (SPEI) Revisited: Parameter Fitting, Evapotranspiration Models, Tools, Datasets and Drought Monitoring. International Journal of Climatology, 34, 3001-3023.
https://doi.org/10.1002/joc.3887
[17]  Vicente-Serrano, S.M. and National Center for Atmospheric Research Staff (2022) The Climate Data Guide: Standardized Precipitation Evapotranspiration Index (SPEI).
https://climatedataguide.ucar.edu/climate-data/standardized-precipitation-evapotranspiration-index-spei
[18]  Guttman, N. (2007) Accepting the Standardized Precipitation Index: A Calculation Algorithm. JAWRA Journal of the American Water Resources Association, 35, 311-322.
https://doi.org/10.1111/j.1752-1688.1999.tb03592.x
[19]  Vicente-Serrano, S., Lopez-Moreno, J., Beguería, S., Lorenzo-Lacruz, J., Azorin-Molina, C. and Moran_Tejeda, E. (2012) Accurate Computation of a Streamflow Drought. Journal of Hydraulic Engineering, 17, 318-332.
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000433
[20]  Kraft, G.J., Clancy, K., Mechenich, D.J. and Haucke, J. (2012) Irrigation Effects in the Northern Lake States: Wisconsin Central Sands Revisited. Ground Water, 50, 308-318.
https://doi.org/10.1111/j.1745-6584.2011.00836.x
[21]  Sloto, R.A. and Crouse, M.Y. (1996) HYSEP—A Computer Program for Streamflow Hydrograph Separation and Analysis: U.S. Geological Survey Water-Resources Investigations Report 96-4040.
http://pubs.er.usgs.gov/publication/wri964040
[22]  Klaus, J. and McDonnell, J. (2013) Hydrograph Separation Using Stable Isotopes: Review and Evaluation. Journal of Hydrology, 505, 47-64.
https://doi.org/10.1016/j.jhydrol.2013.09.006
[23]  Pelletier, A. and Andréassian, V. (2020) Hydrograph Separation: An Impartial Parametrisation for an Imperfect Method. Hydrology and Earth System Sciences, 24, 1171-1187.
https://doi.org/10.5194/hess-24-1171-2020
[24]  Eckhardt, K. (2023) How Physically Based Is Hydrograph Separation by Recursive Digital Filtering? Hydrology and Earth System Sciences, 27, 495-499.
https://doi.org/10.5194/hess-27-495-2023
[25]  Penna, D. and van Meerveld, H. (2019) Spatial Variability in the Isotopic Composition of Water in Small Catchments and Its Effect on Hydrograph Separation. Wires Water, 6, e1367.
https://doi.org/10.1002/wat2.1367
[26]  Shao, G., Zhang, D., Guan, Y., Sadat, M.A. and Huang, F. (2020) Application of Different Separation Methods to Investigate the Baseflow Characteristics of a Semi-Arid Sandy Area, Northwestern China. Water, 12, Article 434.
https://doi.org/10.3390/w12020434
[27]  Markovich, K., Dahlke, H., Arumí, J., Maxwell, R. and Fogg, G. (2019) Bayesian Hydrograph Separation in a Minimally Gauged Alpine Volcanic Watershed in Central Chile. Journal of Hydrology, 575, 1288-1300.
https://doi.org/10.1016/j.jhydrol.2019.06.014
[28]  Shilling, K., Langel, R., Wolter, C. and Areas-Amado, A. (2021) Using Baseflow to Quantify Diffuse Groundwater Recharge and Drought at a Regional Scale. Journal of Hydrology, 602, Article ID: 126765.
https://doi.org/10.1016/j.jhydrol.2021.126765
[29]  Troolin, W. and Clancy, K. (2016) Comparison of Three Delineation Methods Using the Curve Number Method to Model Runoff. Journal of Water Resource and Protection, 8, 945-964.
https://doi.org/10.4236/jwarp.2016.811077
[30]  Jenson, S. (1984) Automated Derivation of Hydrological Basin Characteristics from Digital Elevation Data. US Geological Survey Report 14-08-0001-20129.
http://topotools.cr.usgs.gov/pdfs/automated-derivation-of-hydrologic-basin-characteristics-from-digital-elevatioin-model-data.pdf
[31]  USGS (US Geological Survey) (2019) NED (National Elevation Data) 2020 Elevation. SDE Raster Digital Data.
http://nationalmap.gov/elevation.html
[32]  USGS (US Geological Survey) (2020) NLCD (National Land Cover Database) 2020 Land Cover. SDE Raster Digital Data.
https://www.mrlc.gov/
[33]  Mann, H.B. (1945) Nonparametric Tests against Trend. Econometrica, 13, 245-259.
https://doi.org/10.2307/1907187
[34]  Kendall, M.G. (1975) Rank Correlation Methods. Oxford University Press, New York.
[35]  Helsel, D. and Hirsch, R. (1992) Statistical Methods in Water Resources. Elsevier, Amsterdam.
[36]  Milly, P., Betancourt, J., Falkenmark, M., Hirsch, R., Kundzewicz, Z., Lettenmaier, D. and Stouffer, R. (2008) Stationarity Is Dead: Whither Water Management? Science, 319, 573-574.
https://doi.org/10.1126/science.1151915
[37]  Milly, P., Betancourt, J., Falkenmark, M., Hirsch, R., Kundzewicz, Z., Lettenmaier, D. and Stouffer, R. (2015) On Critiques of “Stationarity Is Dead: Whither Water Management?” Water Resource Research, 51, 7785-7789.
https://doi.org/10.1002/2015WR017408
[38]  Wang, F., Shao, W., Yu, H., Kan, G., He, X., Zhang, D., Ren, M. and Wang, G. (2020) Re-Evaluation of the Power of the Mann-Kendall Test for Detecting Monotonic Trends in Hydrometeorological Time Series. Frontiers in Earth Science, 8, Article 494616.
https://doi.org/10.3389/feart.2020.00014
[39]  Moye, L. and Kapadia, A. (1995) Predictions of Drought Length Extreme Order Statistics Using Run Theory. Journal of Hydrology, 169, 95-110.
https://doi.org/10.1016/0022-1694(94)02662-U
[40]  Smakhtin, V.U. (2001) Low Flow Hydrology: A Review. Journal of Hydrology, 240, 147-186.
https://doi.org/10.1016/S0022-1694(00)00340-1
[41]  Heinrich, G. and Andreas, G. (2011) The Future of Dry and Wet Spells in Europe: A Comprehensive Study Based on the ENSEMBLES Regional Climate Models. International Journal of Climatology, 32, 1951-1970.
https://doi.org/10.1002/joc.2421
[42]  Wisconsin Initiative on Climate Change Impacts (WICCI) (2021) Wisconsin’s Changing Climate: Impacts and Solutions for a Warmer Climate. 2021 Assessment Report: Wisconsin’s Changing Climate, Nelson Institute for Environmental Studies, University of Wisconsin-Madison and the Wisconsin Department of Natural Resources, Madison, WI.
[43]  Briggs, M., Gazoorian, C., Doctor, D. and Burns, D. (2022) A Multiscale Approach for Monitoring Groundwater Discharge to Headwater Streams by the U.S. Geological Survey Next Generation Water Observing System Program—An Example from the Neversink Reservoir Watershed, New York. U.S. Geological Survey Fact Sheet 2022-3077.
https://doi.org/10.3133/fs20223077
[44]  Clancy, K. (2021) Evaluating the Effect of Land Cover, Seasonality and Delineation Method on Runoff at the Watershed Scale. Journal of Water Resource and Protection, 13, 750-765.
https://doi.org/10.4236/jwarp.2021.139039

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133