|
Pt/TiO2催化剂催化氧化VOCs性能研究综述
|
Abstract:
挥发性有机化合物(VOCs)的绿色处理技术一直以来都是人们关注的重点,Pt/TiO2催化剂由于其优异的催化性能成为应用最广泛的催化剂之一。但随着工业的快速发展,人们对催化剂催化氧化VOCs的性能提出了更高的要求。本文分析总结了近年来对Pt/TiO2催化剂进行改进的部分方法,包括使用不同形貌和晶型的TiO2作载体、对TiO2载体进行预处理、改变Pt的负载量和分散度、对催化剂掺杂改性等。最后发现这些改性方法均对催化剂催化氧化VOCs的效率、热稳定性、抗毒性等性能均有显著影响。受这些改性方法的启发,本文对Pt/TiO2催化剂未来绿色、环保的改性方法提出了新的可能。
The green treatment technology of volatile organic compounds (VOCs) has always been the focus of attention, and Pt/TiO2 catalysts have become one of the most widely used catalysts due to their excellent catalytic performance. However, with the rapid development of industry, people have put forward higher requirements for the performance of catalysts to catalyze the oxidation of VOCs. This paper analyzes and summarizes some methods for improving Pt/TiO2 catalysts in recent years, including the use of TiO2 supports with different morphologies and crystal forms, the pretreatment of TiO2 supports, the change of the loading and dispersion of Pt, and the overall doping modification of catalysts. Finally, it is found that these modification methods have an impact on the efficiency, thermal stability and toxicity resistance of catalysts in the catalytic oxidation of VOCs. Inspired by these modification methods, this paper proposes new possibilities for the future green and environmentally friendly modification methods of Pt/TiO2 catalysts.
[1] | Li, W.B., Wang, J.X. and Gong, H. (2009) Catalytic Combustion of VOCs on Non-Noble Metal Catalysts. Catalysis Today, 14, 81-87. https://doi.org/10.1016/j.cattod.2009.03.007 |
[2] | Zhang, C., Liu, F., Zhai, Y., et al. (2012) Alkali-Metal-Promoted Pt/TiO2 Opens a More Efficient Pathway to Formaldehyde Oxidation at Ambient Tempera-tures. Angewandte Chemie International Edition, 51, 9628-9632.
https://doi.org/10.1002/anie.201202034 |
[3] | Chen, X., Zhao, Z., Zhou, Y., et al. (2018) A Facile Route for Spraying Preparation of Pt/TiO2 Monolithic Catalysts toward VOCs Combustion. Applied Catalysis A: General, 566, 190-199. https://doi.org/10.1016/j.apcata.2018.08.025 |
[4] | Bai, B. and Li, J. (2014) Positive Effects of K+ Ions on Three-Dimensional Mesoporous Ag/Co3O4 Catalyst for HCHO Oxidation. Acs Catalysis, 4, 2753-2762. https://doi.org/10.1021/cs5006663 |
[5] | Ahn, C.W., You, Y.W., Heo, I., et al. (2017) Catalytic Combustion of Volatile Organic Compound over Spherical-Shaped Copper-Manganese Oxide. Journal of Industrial and Engi-neering Chemistry, 47, 439-445.
https://doi.org/10.1016/j.jiec.2016.12.018 |
[6] | Cao, S., Fei, X., Wen, Y., et al. (2018) Bimodal Mesoporous TiO2 Supported Pt, Pd and Ru Catalysts and Their Catalytic Performance and Deactivation Mechanism for Catalytic Combustion of Dichloromethane (CH2Cl2). Applied Catalysis A: General, 550, 20-27. https://doi.org/10.1016/j.apcata.2017.10.006 |
[7] | Spencer, M.S. (1985) Models of Strong Metal-Support In-teraction (SMSI) in Pt on TiO2 Catalysts. Journal of Catalysis, 93, 216-223. https://doi.org/10.1016/0021-9517(85)90169-1 |
[8] | Rui, Z., Tang, M., Ji, W., et al. (2017) Insight into the Enhanced Performance of TiO2 Nanotube Supported Pt Catalyst for Toluene Oxidation. Catalysis Today, 297, 159-166. https://doi.org/10.1016/j.cattod.2017.04.055 |
[9] | Zhao, S., Li, K., Jiang, S., et al. (2016) Pd-Co Based Spinel Oxides Derived from Pd Nanoparticles Immobilized on Layered Double Hydroxides for Toluene Combustion. Applied Catalysis B: Environmental, 181, 236-248.
https://doi.org/10.1016/j.apcatb.2015.08.001 |
[10] | Feng, D., Rui, Z. and Ji, H. (2011) Monolithic-Like TiO2 Nanotube Supported Ru Catalyst for Activation of CH4 and CO2 to Syngas. Catalysis Communications, 12, 1269-1273. https://doi.org/10.1016/j.catcom.2011.04.011 |
[11] | Zhang, N., Li, X., Guo, Y., et al. (2023) Crystal Engineering of TiO2 for Enhanced Catalytic Oxidation of 1,2-Dichlor- oethane on a Pt/TiO2 Catalyst. Environmental Science & Technology, 57, 7086-7096.
https://doi.org/10.1021/acs.est.3c00165 |
[12] | Jiang, Z.Z., Gu, D.M., Wang, Z.B., et al. (2011) Effects of Ana-tase TiO2 with Different Particle Sizes and Contents on the Stability of Supported Pt Catalysts. Journal of Power Sources, 196, 8207-8215.
https://doi.org/10.1016/j.jpowsour.2011.05.063 |
[13] | Wang, Y., Liu, S., Pei, C., et al. (2019) Modulating the Surface Defects of Titanium Oxides and Consequent Reactivity of Pt Catalysts. Chemical Science, 10, 10531-10536. https://doi.org/10.1039/C9SC03119G |
[14] | Wendt, S., Schaub, R., Matthiesen, J., et al. (2005) Oxygen Va-cancies on TiO2 (110) and Their Interaction with H2O and O2: A Combined High-Resolution STM and DFT Study. Surface Science, 598, 226-245.
https://doi.org/10.1016/j.susc.2005.08.041 |
[15] | Hatsukade, T., Kuhl, K.P., Cave, E.R., et al. (2014) Insights into the Electrocatalytic Reduction of CO2 on Metallic Silver Surfaces. Physical Chemistry Chemical Physics, 16, 13814-13819. https://doi.org/10.1039/C4CP00692E |
[16] | Bonanni, S., A?t-Mansour, K., Harbich, W., et al. (2014) Reaction-Induced Cluster Ripening and Initial Size-Dependent Reaction Rates for CO Oxidation on Ptn/TiO2 (110)-(1 × 1). Journal of the American Chemical Society, 136, 8702-8707. https://doi.org/10.1021/ja502867r |
[17] | Balmes, O., Prévot, G., Torrelles, X., et al. (2016) Diatomic Steps in Pt (997) Surfaces Are Better Catalysts than Monatomic Steps for the CO Oxidation Reaction near Atmospheric Pressure. ACS Catalysis, 6, 1285-1291.
https://doi.org/10.1021/acscatal.5b02526 |
[18] | Wei, T., Zhao, X., Li, L., et al. (2022) Enhanced Formaldehyde Oxidation Performance of the Mesoporous TiO2 (B)-Supported Pt Catalyst: The Role of Hydroxyls. ACS Omega, 7, 25491-25501.
https://doi.org/10.1021/acsomega.2c02490 |
[19] | Shi, K., Wang, L., Li, L., et al. (2019) Mild Preoxidation Treatment of Pt/TiO2 Catalyst and Its Enhanced Low Temperature Formaldehyde Decomposetion. Catalysts, 9, Ar-ticle 694. https://doi.org/10.3390/catal9080694 |
[20] | Joung, H.J., Kim, J.H., Oh, J.S., et al. (2014) Catalytic Oxidation of VOCs over CNT-Supported Platinum Nanoparticles. Applied Surface Science, 290, 267-273. https://doi.org/10.1016/j.apsusc.2013.11.066 |
[21] | Liu, R., Tian, M., Shang, W., et al. (2022) Normal Tem-perature Catalytic Degradation of Toluene over Pt/TiO2. Environmental Technology, 43, 2047-2058. https://doi.org/10.1080/09593330.2020.1864482 |
[22] | Su, Y., Ji, K., Xun, J., et al. (2021) Catalytic Oxidation of Low Concentration Formaldehyde over Pt/TiO2 Catalyst. Chinese Journal of Chemical Engineering, 29, 190-195. https://doi.org/10.1016/j.cjche.2020.04.024 |
[23] | Ge, Y., Fu, K., Zhao, Q., et al. (2019) Performance Study of Modified Pt Catalysts for the Complete Oxidation of Acetone. Chemical Engineering Science, 206, 499-506. https://doi.org/10.1016/j.ces.2019.05.051 |
[24] | Shi, Y., Qiao, Z., Liu, Z., et al. (2019) Cerium Doped Pt/TiO2 for Catalytic Oxidation of Low Concentration Formaldehyde at Room Temperature. Catalysis Letters, 149, 1319-1325. https://doi.org/10.1007/s10562-019-02684-z |
[25] | Tu, L., Liu, R., Zhao, D., et al. (2021) PtPd/TiO2 Catalysts for Low-Temperature Toluene Oxidation. Catalysis Surveys from Asia, 25, 389-398. https://doi.org/10.1007/s10563-021-09335-7 |
[26] | Park, K., Ye, B., Lee, M., et al. (2023) Sulfur-Resistance Properties of WS2-Added Pt/TiO2 Catalysts for Selective Catalytic Oxidation. Catalysis Today, 411, Article ID: 113955. https://doi.org/10.1016/j.cattod.2022.11.016 |
[27] | Mu, R., Fu, Q., Xu, H., et al. (2011) Synergetic Effect of Surface and Subsurface Ni Species at Pt-Ni Bimetallic Catalysts for CO Oxidation. Journal of the American Chemical Society, 133, 1978-1986.
https://doi.org/10.1021/ja109483a |
[28] | Arana, J., Ramirez De La Piscina, P., Llorca, J., et al. (1998) Bimetallic Silica-Supported Catalysts Based on Ni-Sn, Pd-Sn, and Pt-Sn as Materials in the CO Oxidation Reaction. Chemistry of Materials, 10, 1333-1342.
https://doi.org/10.1021/cm970728n |
[29] | Xu, T., Liu, X., Zhu, T., et al. (2022) New Insights into the Influence Mechanism of H2O and SO2 on Pt-W/Ti Catalysts for CO Oxidation. Catalysis Science & Technology, 12, 1574-1585. https://doi.org/10.1039/D1CY01984H |
[30] | Ro, I., Aragao, I.B., Brentzel, Z.J., et al. (2018) Intrinsic Activity of Interfacial Sites for Pt-Fe and Pt-Mo Catalysts in the Hydrogenation of Carbonyl Groups. Applied Catalysis B: En-vironmental, 231, 182-190.
https://doi.org/10.1016/j.apcatb.2018.02.058 |
[31] | Jin, H., Zhou, H. and Zhang, Y. (2017) Insight into the Mechanism of CO Oxidation on WO3 (001) Surfaces for Gas Sensing: A DFT Study. Sensors, 17, 1898. https://doi.org/10.3390/s17081898 |
[32] | Wu, D., Lv, X., Ren, X., et al. (2023) Promotion Effects of Ce-Doping on Catalytic Oxidation of Ethane over Pt/CexTi1-xO2. Catalysts, 13, 626. https://doi.org/10.3390/catal13030626 |
[33] | Hojo, H., Gondo, M., Yoshizaki, S., et al. (2021) Atomic and Electronic Structure of Pt/TiO2 Catalysts and Their Relationship to Catalytic Activity. Nano Letters, 22, 145-150. https://doi.org/10.1021/acs.nanolett.1c03485 |