全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

从红系发育角度探讨高原红细胞增多症发病机制
To Explore the Pathogenesis of High Altitude Polycythemia from the Perspective of Erythroid Development

DOI: 10.12677/ACM.2023.13112453, PP. 17509-17517

Keywords: 高原红细胞增多症,红细胞,细胞因子,信号通路
High Altitude Polycythemia
, Erythrocyte, Cytokines, Signaling Pathway

Full-Text   Cite this paper   Add to My Lib

Abstract:

高原红细胞增多症(HAPC, high altitude polycythemia)是由高原低氧引起的以红细胞过度生成为主要表现的病症,该病发病机制复杂,现代医学、藏医学及中医学对HAPC有大量的研究,主要围绕流行病学,细胞生物学及分子生物学方面,但研究方向比较分散,且药物方面的研究明显不足,所以目前对该病的治疗仍然没有系统的认识,因此本文对HAPC的现代研究进行系统的归纳总结,主要包括影响红细胞生成过程中的影响因子,信号通路及低氧条件下红细胞的损伤,为HAPC的机制研究提供方向,以期为中西医的治疗方案提供理论基础。
High altitude polycythemia (HAPC) is a disease caused by low oxygen at high altitude and mainly manifested by excessive production of red blood cells. Due to the complex pathogenesis of this dis-ease, modern medicine, Tibetan medicine and traditional Chinese medicine have conducted a large number of studies on HAPC, mainly focusing on epidemiology. In terms of cell biology and molecular biology, the research direction is relatively scattered, and the research on drugs is obviously insuf-ficient, so there is still no systematic understanding of the treatment of this disease. Therefore, this paper systematically summarizes the modern research on HAPC, mainly including the influencing factors in the process of erythropoiesis, signaling pathways, and damage of red blood cells under hypoxia conditions. To provide a direction for the study of the mechanism of HAPC, in order to pro-vide a theoretical basis for traditional Chinese and western medicine treatment.

References

[1]  Villafuerte, F.C. and Corante, N. (2016) Chronic Mountain Sickness: Clinical Aspects, Etiology, Management, and Treatment. High Altitude Medicine & Biology, 17, 61-69.
https://doi.org/10.1089/ham.2016.0031
[2]  Champigneulle, B., Hancco, I., Hamard, E., et al. (2022) Excessive Erythrocytosis and Chronic Mountain Sickness in the Highest City in the World: A Longitudinal Study. Chest, 161, 1338-1342.
https://doi.org/10.1016/j.chest.2021.11.030
[3]  Garrido, E., De Maglia, J.B. and Castillo, O. (2021) Acute, Sub-acute and Chronic Mountain Sickness. Revista Clínica Espa?ola (English Edition), 221, 481-490.
https://doi.org/10.1016/j.rceng.2019.12.009
[4]  Wilkes, M.C., Shibuya, A. and Sakamoto, K.M. (2021) Signaling Pathways That Regulate Normal and Aberrant Red Blood Cell Development. Genes (Basel), 12, Article 1646.
https://doi.org/10.3390/genes12101646
[5]  Parisi, S., Finelli, C., Fazio, A., et al. (2021) Clinical and Molecular Insights in Erythropoiesis Regulation of Signal Transduction Pathways in Myelodysplastic Syndromes and β-Thalassemia. International Journal of Molecular Sciences, 22, Article 827.
https://doi.org/10.3390/ijms22020827
[6]  Xiong, B. and Qian, H. (2013) Effects of Sijunzi Decoction and Yup-ingfeng Powder on Expression of Janus Kinase-Signal Transducer and Activator of Transcription Signal Pathway in the Brain of Spleen-Deficiency Model Rats. J Journal of Traditional Chinese Medicine, 33, 78-84.
https://doi.org/10.1016/S0254-6272(13)60105-3
[7]  Zhang, D.X., Shi, W.Y., Zhao, Y.T. and Zhong, X.H. (2011) Adjuvant Effects of Sijunzi Decoction in Chickens Orally Vaccinated with Attenuated Newcastle-Disease Vaccine. Afri-can Journal of Traditional, Complementary and Alternative Medicines, 9, 120-130.
[8]  Yu, W., Lu, B., Zhang, H., et al. (2016) Effects of the Sijunzi Decoction on the Immunological Function in Rats with Dextran Sulfate-Induced Ulcera-tive Colitis. Biomedical Reports, 5, 83-86.
https://doi.org/10.3892/br.2016.678
[9]  华自森, 宋姝丹, 罗春燕, 等. 当归多糖协同Epo对造血干/祖细胞JAK2/STAT5信号传导通路的影响[J]. 中国中药杂志, 2009, 34(24): 3268-3271.
[10]  王玉慧. 斑蝥素对HEL细胞株JAK2基因表达的影响研究及复方斑蝥胶囊治疗真性红细胞增多症临床疗效观察[D]: [硕士学位论文]. 济南: 山东中医药大学, 2012.
[11]  Chen, C.Y., Chen, J., He, L. and Stiles, B.L. (2018) PTEN: Tumor Suppressor and Metabolic Regulator. Frontiers in Endocrinology, 9, Article 338.
https://doi.org/10.3389/fendo.2018.00338
[12]  Xie, Y., Shi, X., Sheng, K., et al. (2019) PI3K/Akt Signaling Transduction Pathway, Erythropoiesis and Glycolysis in Hypoxia (Review). Molecular Medicine Reports, 19, 783-791.
https://doi.org/10.3892/mmr.2018.9713
[13]  熊权鑫. PI3K/AKT/NF-KB信号通路对高原红细胞增多症大鼠骨髓组织中HIF-1α表达变化的调控作用研究[D]: [硕士学位论文]. 雅安: 四川农业大学, 2018.
[14]  翁菲菲, 冯文化, 郭青榜, 等. 红景天苷通过调控PI3K/AKT/Nrf2通路对高糖诱导的心肌细胞的保护作用及机制研究[J]. 中国循证心血管医学杂志, 2022, 14(7): 828-832.
[15]  Li, K. and He, C. (2019) Gastric Mucosal Lesions in Tibetans with High-Altitude Polycythemia Show Increased HIF-1A Expression and ROS Production. BioMed Research International, 2019, Article ID: 6317015.
https://doi.org/10.1155/2019/6317015
[16]  Zhang, Z., Yao, L., Yang, J., Wang, Z.K. and Du, G. (2018) PI3K/Akt and HIF-1 Signaling Pathway in Hypoxia-Ischemia (Review). Molecular Medicine Reports, 18, 3547-3554.
https://doi.org/10.3892/mmr.2018.9375
[17]  Lorenzo, F.R., Huff, C., Myllymaki, M., et al. (2014) A Genetic Mechanism for Tibetan High-Altitude Adaptation. Nature Genetics, 46, 951-956.
https://doi.org/10.1038/ng.3067
[18]  Miikkulainen, P., Hogel, H., Seyednasrollah, F., et al. (2019) Hypox-ia-Inducible Factor (HIF)-Prolyl Hydroxylase 3 (PHD3) Maintains High HIF2A mRNA Levels in Clear Cell Renal Cell Carcinoma. Journal of Biological Chemistry, 294, 3760-3771.
https://doi.org/10.1074/jbc.RA118.004902
[19]  Semenza, G.L. (2020) The Genomics and Genetics of Oxygen Homeostasis. Annual Review of Genomics and Human Genetics, 21, 183-204.
https://doi.org/10.1146/annurev-genom-111119-073356
[20]  李斌. HMGB1、VEGF-A在高原红细胞增多症中的表达研究[D]: [硕士学位论文]. 西宁: 青海大学, 2021.
[21]  潘珍珍. 基于益气补血法探究当归、黄芪醇提物对4T1乳腺癌小鼠血清及肿瘤组织IL-10和TGF-β1的影响[D]: [硕士学位论文]. 杭州: 浙江中医药大学, 2019.
[22]  Perry, J.M., Harandi, O.F., Porayette, P., et al. (2009) Maintenance of the BMP4-Dependent Stress Eryth-ropoiesis Pathway in the Murine Spleen Requires Hedgehog Signaling. Blood, 113, 911-918.
https://doi.org/10.1182/blood-2008-03-147892
[23]  Harandi, O.F., Hedge, S., Wu, D.C., Mckeone, D. and Paul-son, R.F. (2010) Murine Erythroid Short-Term Radioprotection Requires a BMP4-Dependent, Self-Renewing Population of Stress Erythroid Progenitors. Journal of Clinical Investigation, 120, 4507-4519.
https://doi.org/10.1172/JCI41291
[24]  Ma, J., Ji, L., Li, Z., et al. (2019) Downregulation of Intrinsic Apoptosis Pathway in Erythroblasts Contributes to Excessive Erythrocytosis of Chronic Mountain Sickness. Blood Cells, Molecules, and Diseases, 76, 25-31.
https://doi.org/10.1016/j.bcmd.2019.01.002
[25]  Croce, C.M. (2009) Causes and Consequences of MicroRNA Dysregulation in Cancer. Nature Reviews Genetics, 10, 704-714.
https://doi.org/10.1038/nrg2634
[26]  Adams, B.D., Kasinski, A.L. and Slack, F.J. (2014) Aberrant Regulation and Function of MicroRNAs in Cancer. Current Biolo-gy, 24, R762-R776.
https://doi.org/10.1016/j.cub.2014.06.043
[27]  Jafari, M., Ghadami, E., Dadkhah, T. and Akhavan-Niaki, H. (2019) PI3k/AKT Signaling Pathway: Erythropoiesis and Beyond. Journal of Cellular Physiology, 234, 2373-2385.
https://doi.org/10.1002/jcp.27262
[28]  Rasmussen, K.D., Simmini, S., Abreu-Goodger, C., et al. (2010) The miR-144/451 Locus Is Required for Erythroid Homeostasis. Journal of Experimental Medicine, 207, 1351-1358.
https://doi.org/10.1084/jem.20100458
[29]  Mukai, N., Nakayama, Y., Murakami, S., et al. (2018) Po-tential Contribution of Erythrocyte MicroRNA to Secondary Erythrocytosis and Thrombocytopenia in Congenital Heart Disease. Pediatric Research, 83, 866-873.
https://doi.org/10.1038/pr.2017.327
[30]  付成冰. 高原红细胞增多症患者有核红细胞GATA-1与miR-451a表达的相关性研究[D]: [硕士学位论文]. 西宁: 青海大学, 2020.
[31]  Fujiwara, T. (2017) GATA Transcription Factors: Basic Principles and Related Human Disorders. The Tohoku Journal of Experimental Medicine, 242, 83-91.
https://doi.org/10.1620/tjem.242.83
[32]  Lentjes, M.H., Niessen, H.E., Akiyama, Y., et al. (2016) The Emerging Role of GATA Transcription Factors in Development and Disease. Expert Reviews in Molecular Medicine, 18, e3.
https://doi.org/10.1017/erm.2016.2
[33]  黄河. 急性高山病和高原红细胞增多症的microRNA表达特征及其病理生理学意义研究[D]: [博士学位论文]. 重庆: 中国人民解放军陆军军医大学, 2020.
[34]  赵万花, 王平义, 顾霞, 等. 高原低氧相关疾病的防治新靶点: HIF-1α[J]. 西北国防医学杂志, 2021, 42(7): 625-630.
[35]  王阶, 滕菲, 刘咏梅, 等. 血塞通对冠心病不稳定型心绞痛血瘀证患者microRNA的干预作用[J]. 中国实验方剂学杂志, 2017, 23(19): 11-16.
[36]  Wang, Y., Zhao, N., Xiong, Y., et al. (2020) Downregulated Recycling Process But Not De Novo Synthesis of Glutathione Limits Antioxidant Capacity of Erythrocytes in Hypoxia. Oxidative Medicine and Cellular Lon-gevity, 2020, Article ID: 7834252.
https://doi.org/10.1155/2020/7834252
[37]  王琼, 格桑罗布, 刘媛. 慢性高原红细胞增多症不同体液因子的研究进展[J]. 西藏医药, 2021, 42(3): 151-153.
[38]  刘培. 基于PI3K/AKT通路研究四君子汤调节2型糖尿病糖脂代谢紊乱的作用机制[D]: [硕士学位论文]. 太原: 山西中医药大学, 2020.
[39]  Meng, T., Li, X., Li, C., et al. (2022) Natural Products of Traditional Chinese Medicine Treat Atherosclerosis by Regulating Inflammatory and Oxidative Stress Pathways. Frontiers in Pharmacology, 13, Article 997598.
https://doi.org/10.3389/fphar.2022.997598
[40]  何浩文. 藻酸双脂钠联合丹参川芎嗪治疗高原红细胞增多症的疗效分析[J]. 临床医药文献电子杂志, 2020, 7(19): 140-141.
[41]  Kuck, L., Grau, M., Bloch, W. and Simmonds, M.J. (2019) Shear Stress Ameliorates Superoxide Impairment to Erythrocyte Deformability with Concurrent Nitric Oxide Synthase Activation. Frontiers in Physiology, 10, Article 36.
https://doi.org/10.3389/fphys.2019.00036
[42]  Smith, T.G., Talbot, N.P., Privat, C., et al. (2009) Effects of Iron Supplementation and Depletion on Hypoxic Pulmonary Hypertension: Two Randomized Controlled Trials. The Journal of the American Medical Association, 302, 1444-1450.
https://doi.org/10.1001/jama.2009.1404

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133