全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于3D点云的列车零部件异常检测技术研究
Anomaly Detection of Train Components Based on 3D Point Cloud

DOI: 10.12677/AIRR.2023.124030, PP. 267-280

Keywords: 3D点云,列车零部件异常,ICP点云配准,局部检测算法
3D Point Cloud
, Abnormal Train Parts, ICP Point Cloud Registration, Local Detection Algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着铁路技术的飞速发展,列车安全问题也备受瞩目。为解决铁路系统快速增加的吞吐量与日益增长的检修压力之间的矛盾,本文提出了一种基于3D点云的列车零部件异常检测方法。首先,建立列车标准点云模板;然后,截取待检部件与相应模板部件进行全局ICP点云配准,利用差异点筛选出异常区域;最后,通过零部件局部检测算法消除误检测区域,得到最终结果。该方法以某地铁车辆段采集数据作为测试集进行了实验,结果表明,算法检测精度高,检测项点覆盖范围较广,具有良好的工业应用价值。
Railway traffic safety has attracted much attention with the rapid development of railway technology. An automatic abnormal railway underbody detection technology based 3D cloud point is proposed to solve the contradiction between the rapidly increasing throughput and the increasing maintenance pressure. Firstly, establishe the train standard point cloud template. Then, the parts to be inspected are intercepted and matched with the corresponding template parts for global ICP point cloud registration, and the abnormal areas are filtered out by using the difference points. Finally, remove the false detection areas by the part local detection algorithm, and the final results are obtained. This method is tested on the dataset collected from a subway depot as a test set. The results show that the algorithm has high detection accuracy, wide coverage of detection items, and good industrial application value.

References

[1]  Wang, Y.W., Ni, Y.Q. and Wang, X. (2020) Real-Time Defect Detection of High-Speed Train Wheels by Using Bayesian Forecasting and Dynamic Model. Mechanical Systems and Signal Processing, 139, Article 106654.
[2]  Goo, B.C., Lim, C.H. and Kwon, S.J. (2006) Finite Element Analysis of an Induced Current Potential Drop Method for the Defect Detection of Railway Axles. Key Engineering Materials, 321-323, 20-23.
https://doi.org/10.4028/www.scientific.net/KEM.321-323.20
[3]  冯泽阳, 邬平波. 基于SVM的转向架故障诊断技术研究[J]. 机械, 2020, 47(8): 37-43.
[4]  彭丹, 周航. 基于轨边图像SURF特征的动车底部件异常检测算法[J]. 信息系统工程, 2016(2): 127-128.
[5]  路绳方. 复杂场景下动车底部螺栓丢失故障的自动检测[J]. 激光与光电子学进展, 2017, 54(11): 297-303.
[6]  孙国栋, 汤汉兵, 林凯, 等. 基于多特征融合和BP-AdaBoost算法的列车关键零件故障自动识别[J]. 中国机械工程, 2017, 28(21): 2588-2594.
[7]  陆其波, 梁桂琦, 古鹏, 等. 地铁列车360°外观故障图像检测系统的应用[J]. 运输经理世界, 2020(3): 46-48.
[8]  Li, Y., Cao, X., Chen, H., et al. (2018) Defect Status Detection Method Based on Machine Vision for External Gear of Train. Tiedao Xuebao Journal of the China Railway Society, 40, 29-37.
[9]  Zhang, R.J., Bao-Ming, P.U. and Pan, S.M. (2011) Template Matching Algorithm in the Study of CRH Train Parts Fault Detection System. Computer Systems & Applications, 20, 134-137.
[10]  Mazzeo, P.L., Nitti, M., Stella, E., et al. (2004) An Automatic Inspection System for the Hexagonal Headed Bolts Detection in Railway Maintenance. The 7th International IEEE Conference on Intelligent Transportation Systems, Washington, 3-6 October 2004, 417-422.
[11]  Marino, F., Distante, A., Mazzeo, P.L., et al. (2007) A Real-Time Visual Inspection System for Railway Maintenance: Automatic Hexagonal-Headed Bolts Detection. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 37, 418-428.
https://doi.org/10.1109/TSMCC.2007.893278
[12]  李萍, 吴斌方, 刘默耘, 等. 基于深度学习的铁路列车关键零部件图像故障检测[J]. 铁道科学与工程学报, 2019, 16(12): 3119-3125.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133