|
基于供应中断风险下生鲜农产品供应链网络节点重要性评价研究
|
Abstract:
随着人民对于生活质量的更高追求以及现代物流供应链的不断完善,生鲜农产品供应链网络得到了飞快的发展。但是由于生鲜农产品供应链上下游节点企业易受到外界各因素的干扰,从而存在供应中断风险,影响供应链网络整体的运行。因此,本文首先根据生鲜农产品供应链的特点和业务流程,结合复杂网络理论,构建其网络拓扑结构图。接着采用三角模糊数的方法确定网络拓扑结构图各边的权重,并引入节点重要度贡献矩阵和网络效率来表征各个节点在供应链网络局部和全局中的重要性。基于此,对供应链中的重要节点采取必要的预防措施,来增强供应链的抗风险能力。最后,通过实证分析对生鲜农产品供应链中各个节点的重要性进行计算和排序,验证了该评估方法的有效性和实用性。
With the people’s higher pursuit of quality of life and the continuous improvement of the modern logistics supply chain, the supply chain network of fresh agricultural products has developed rap-idly. However, due to the fresh agricultural products supply chain upstream and downstream node enterprises are susceptible to the interference of external factors, thus there is a risk of supply in-terruption, affecting the overall operation of the supply chain network. Therefore, this paper firstly constructs the network topology diagram of fresh agricultural products supply chain according to its characteristics and business process, combined with complex network theory. Then the triangu-lar fuzzy number method is used to determine the weights of each edge of the network topology graph, and the node importance contribution matrix and network efficiency are introduced to characterize the importance of each node in the supply chain network locally and globally. Based on this, necessary preventive measures are taken for the important nodes in the supply chain to en-hance the risk resistance of the supply chain. Finally, the importance of each node in the supply chain of fresh agricultural products is calculated and ranked through empirical analysis, which ver-ifies the effectiveness and practicality of the assessment method.
[1] | Lai, Y.C., Motter, A.E. and Nishikawa, T. (2004) Attacks and Cascades in Complex Networks. Lecture Notes in Physics, 650, 299-310. https://doi.org/10.1007/978-3-540-44485-5_14 |
[2] | Mark, G., Joseph, Y.S. and Fanwen, M.A. (2007) Stochas-tic Model for Risk Management in Global Supply Chain Networks. European Journal of Operational Research, 182, 164-173.
https://doi.org/10.1016/j.ejor.2006.08.028 |
[3] | 张琨, 沈海波, 张宏, 等. 基于灰色关联分析的复杂网络节点重要性综合评价方法[J]. 南京理工大学学报, 2012, 36(4): 579-586. |
[4] | 赫南, 李德毅, 淦文燕, 等. 复杂网络中重要性节点发掘综述[J]. 计算机科学, 2007, 34(12): 1-5+17. |
[5] | Freeman, L.C. (1979) Centrality in Social Networks. Conceptual Clari-fication. Social Networks, 16, 215-239.
https://doi.org/10.1016/0378-8733(78)90021-7 |
[6] | Brandes, U. (2001) A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology, 25, 163-177.
https://doi.org/10.1080/0022250X.2001.9990249 |
[7] | Corley, H.W. and Sha, D.Y. (1982) Most Vital Links and Nodes in Weighted Networks. Operations Research Letters, 1, 157-160. https://doi.org/10.1016/0167-6377(82)90020-7 |
[8] | 谭跃进, 吴俊, 邓宏钟. 复杂网络中节点重要度评估的节点收缩方法[J]. 系统工程理论与实践, 2006, 26(11): 79-83+102. |
[9] | 唐亮, 何杰, 靖可. 关联供应链网络级联失效机理及鲁棒性研究[J]. 管理科学学报, 2016, 19(11): 33-44+62. |
[10] | 周漩, 张凤鸣, 李克武, 等. 利用重要度评价矩阵确定复杂网络关键节点[J]. 物理学报, 2012, 61(5): 1-7. |
[11] | 刘若阳, 申威, 史稳健, 等. 基于TF-AHP-TOPSIS 的生鲜电商冷链物流服务商评价[J]. 现代商贸工业, 2020, 41(1): 43-47. |