全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Strategies for Advancing Road Construction Slope Stability: Unveiling Innovative Techniques for Managing Unstable Terrain

DOI: 10.4236/ojce.2023.134041, PP. 572-616

Keywords: Consolidation Processes, Managing Unstable Terrain, Numerical Methods, Safety Coefficient, Slope Stability Assessment, Soil Cohesion

Full-Text   Cite this paper   Add to My Lib

Abstract:

This comprehensive review paper explores various aspects of geotechnical engineering, with a focus on the management of unstable terrains, numerical methods for solving complex soil and consolidation problems, rheological analysis of suspensions and muddy soils, and stability analysis of slopes. It begins by examining the unique physicochemical properties of cohesive sediments, including cohesion and specific surface area. The temporal evolution of deposit concentration and average bed concentration in unstable terrains is discussed, along with settling behavior of isolated particles and hindered settling using empirical equations. Key sedimentation theories, such as Kynch’s theory, and geotechnical consolidation theories, including Terzaghi’s consolidation equation and Gibson’s theory, are presented. The investigation interrelates these theories and principles to offer a holistic view of managing unstable terrains. It also addresses the challenges associated with experimental determination of constitutive relationships and presents alternative simplification methods proposed by researchers. Additionally, it delves into numerical methods for solving nonlinear partial differential equations governing soil behavior, emphasizing the need for numerical frameworks and discussing various techniques and associated challenges. The rheological analysis section covers material flow behavior, rheological behavior models, and the rheological properties of water and cohesive sediment mixtures. Fundamental geotechnical calculations, constitutive laws, and failure criteria are explained, highlighting their relevance in geotechnical engineering applications. This paper provides a multidimensional perspective on geotechnical engineering, offering valuable insights into soil properties, consolidation processes, numerical methods, rheological analysis, and slope stability assessment for professionals in the field.

References

[1]  Buffle, J. and Chalmers, R.A. (1988) Complexation Reactions in Aquatic Systems: An Analytical Approach. Ellis Horwood Series in Analytical Chemistry, John Wiley and Sons Inc., New York.
https://www.osti.gov/biblio/6446347
[2]  Been, K. and Sills, G.C. (1981) Self-Weight Consolidation of Soft Soils: An Experimental and Theoretical Study. Geotechnique, 31, 519-535.
https://doi.org/10.1680/geot.1981.31.4.519
[3]  Alexis, A., Bassoullet, P., Le Hir, P. and Teisson, C. (1992) Consolidation of Soft Marine Soils: Unifying Theories, Numerical Modelling and in situ Experiments. Coastal Engineering, 2949-2961.
https://doi.org/10.1061/9780872629332.225
[4]  Gallois, S. (1995) Modélisation de la sédimentation-consolidation et expérimentations sur les vases estuariennes, Nantes.
https://www.theses.fr/1995NANT2071
[5]  Masutti, F. (2001) étude expérimentale de la sédimentation-consolidation et de l’acquisition de résistance d’un sol fin, Institut National Polytechnique de Lorraine.
https://hal.univ-lorraine.fr/tel-01750328
[6]  Alexis, A., Lebras, G. and Thomas, P. (2004) Experimental Bench for Study of Settling-Consolidation Soil Formation. Geotechnical Testing Journal, 27, 557-567.
https://doi.org/10.1520/GTJ11582
[7]  Pham Van Bang, D., Lefrançois, E., Sergent, P. and Bertrand, F. (2006) Approche expérimentale par IRM et modélisation de la sedimentation et de la consolidation de la vase. IXèmes Journées Nationales Génie Civil—Génie Côtier, Brest, 12-14 Septembre 2006, 409-417.
https://doi.org/10.5150/jngcgc.2006.039-P
[8]  Migniot, C. (1968) Etude des propriétés physiques de différents sédiments très fins et de leur comportement sous des actions hydrodynamiques. La Houille Blanche, 54, 591-620.
https://doi.org/10.1051/lhb/1968041
[9]  Winterwerp, J.C. and Van Kesteren, W.G.M. (2004) Introduction to the Physics of Cohesive Sediment Dynamics in the Marine Environment. Elsevier Science, Amsterdam.
[10]  Alves, M.C.M. (1992) Comportamento de sedimentação e adensamento de uma lama vermelha. Ph.D. Thesis, Pontifcia Universidade Católica do Rio de Janeiro, Rio de Janeiro.
[11]  Hayter, E.J. (1986) Estuarial Sediment Bed Model. Estuarine Cohesive Sediment Dynamics, 14.
https://doi.org/10.1029/LN014p0326
[12]  Stokes, G.G., et al. (1851) On the Effect of the Internal Friction of Fluids on the Motion of Pendulums. In: Stokes, G.G., Ed., Mathematical and Physical Papers, Cambridge University Press, Cambridge, 1-10.
[13]  Oseen, C.W. (1927) Neuere methoden und ergebnisse in der hydrodynamic. Monatshefte für Mathematik und Physik, 35, A67-A68.
[14]  Richarson, J.F. and Zaki, W.N. (1954) Sedimentation and Fluidisation, Part 1. Chemical Engineering Research and Design, 75, S82-S100.
[15]  Kynch, G.J. (1952) A Theory of Sedimentation. Transactions of the Faraday Society, 48, 166-176.
https://doi.org/10.1039/tf9524800166
[16]  Terzaghi, K. (1943) Theoretical Soil Mechanics. Wiley & Son, New York.
https://doi.org/10.1002/9780470172766
[17]  Gibson, R.E., England, G.L. and Hussey, M.J.L. (1967) The Theory of One-Dimensional Consolidation of Saturated Clays: 1. Finite Non-Linear Consildation of Thin Homogeneous Layers. Geotechnique, 17, 261-273.
https://doi.org/10.1680/geot.1967.17.3.261
[18]  Toorman, E.A. (1999) Sedimentation and Self-Weight Consolidation: Constitutive Equations and Numerical Modelling. Geotechnique, 49, 709-726.
https://doi.org/10.1680/geot.1999.49.6.709
[19]  Winterwerp, H. (1999) On the Dynamics of High-Concentrated Mud Suspensions. Communications on Hydraulic and Geotechnical Engineering.
https://documentatiecentrum.watlab.be/owa/imis.php?module=ref&refid=281844&lang=en
[20]  Merckelbach, L.M. (2000) Consolidation and Strength Evolution of Soft Mud Layers. Ph.D. Thesis, University of Technology, Delft.
[21]  Bartholomeeusen, Gert (2003) Compound Shock Waves and Creep Behaviour in Sediment Beds, Oxford University, UK.
[22]  Darcy, H. (1856) Les fontaines publiques de la ville de Dijon: exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau. Victor Dalmont, Paris.
[23]  Bartholomeeusen, G., Sills, G.C., Znidarčić, D., Van Kesteren, W., Merckelbach, L.M., Pyke, R., Carrier III, W.D., Lin, H., Penumadu, D., Winterwerp, H., et al. (2002) Sidere: Numerical Prediction of Large-Strain Consolidation. Geotechnique, 52, 639-648.
https://doi.org/10.1680/geot.2002.52.9.639
[24]  Merckelbach, L.M. and Kranenburg, C. (2004) Determining Effective Stress and Permeability Equations for Soft Mud from Simple Laboratory Experiments. Geotechnique, 54, 581-591.
https://doi.org/10.1680/geot.2004.54.9.581
[25]  Pane, V. and Schiffman, R.L. (1985) A Note on Sedimentation and Consolidation. Geotechnique, 35, 69-72.
https://doi.org/10.1680/geot.1985.35.1.69
[26]  Bürger, R. and Hvistendahl Karlsen, K. (2001) On Some Upwind Difference Schemes for the Phenomenological Sedimentation-Consolidation Model. Journal of Engineering Mathematics, 41, 145-166.
https://doi.org/10.1023/A:1011935232049
[27]  Rouas, G. (1996) Etude et modélisation par éléments finis des processus hydrosédimentaires estuariens. Compiègne.
https://www.theses.fr/1996COMPD884
[28]  Normant, C.L. (2000) Three-Dimensional Modelling of Cohesive Sediment Transport in the Loire Estuary. Hydrological Processes, 14, 2231-2243.
[29]  Toorman, E.A. (1996) Sedimentation and Self-Weight Consolidation: General Unifying Theory. Géotechnique, 46, 103-113.
https://doi.org/10.1680/geot.1996.46.1.103
[30]  Lee, S.R., Kim, Y.S. and Kim, Y.S. (2000) Analysis of Sedimentation/Consolidation by Finite Element Method. Computers and Geotechnics, 27, 141-160.
https://doi.org/10.1016/S0266-352X(00)00014-8
[31]  Bürger, R. (2000) Phenomenological Foundation and Mathematical Theory of Sedimentation—Consolidation Processes. Chemical Engineering Journal, 80, 177-188.
https://doi.org/10.1016/S1383-5866(00)00089-7
[32]  Midoux, N. (1985) Mécanique et rhéologie des fluides en génie chimique. Lavoisier technique et documentation, Paris, 512.
https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9116406
[33]  Coussot, P. and Grossiord, J.L. (2002) Understanding Rheology—From Blood Circulation to Concrete Hardening. Paris.
[34]  Besq, A. (2000) Ecoulements laminaires de suspensions de bentonites industrielles. Caractérisation rhéométrique. Ecoulements en conduites axisymétriques. Applications aux activités du génie civil. PhD Thesis, Poitier University, Poitier.
[35]  Toorman, E.A. (1992) Modelling of Fluid Mud Flow and Consolidation. Katholieke Universiteit Leuven, Leuven.
[36]  Babatope, B., Williams, P.R. and Williams, D.J.A. (2006) In situ Rheometry of Cohesive Sediments under Water Wave Pressure. Continental Shelf Research, 26, 488-498.
https://doi.org/10.1016/j.csr.2005.12.007
[37]  Besq, A. and Makhloufi, R. (2007) Projet de désenvasement du barrage de Saint Savinien: caractérisation de sédiments naturels prélevés in-situ. Rapport détude confidentiel, LUSAC, Toledo, 20.
[38]  Nova, R. (2005) Fondements de la mécanique des sols. Lavoisier, 420.
[39]  Mestat, P. (1998) Du bon usage de l’élasticité dans les calculs de géotechnique. La pratique des calculs tridimensionnels en géotechnique, 256, 241.
[40]  Mestat, P. (1998) Analyse en éléments finis des problèmes tridimensionnels de géotechnique, Journées d’étude sur la pratique des calculs tridimensionnels en géotechnique. Presses de l’Ecole Nationale des Ponts et Chaussées, Paris.
[41]  Tresca, H.E. (1864) Sur l’ecoulement des corps solides soumis a de fortes pressions. Gauthier-Villars.
[42]  Drucker, D.C. and Prager, W. (1952) Soil Mechanics and Plastic Analysis or Limit Design. Quarterly of Applied Mathematics, 10, 157-165.
https://doi.org/10.1090/qam/48291
[43]  Agbelele, K.J., Adeoti, G.O., Agossou, D.Y. and Aïsse, G.G. (2023) Study of Slope Stability Using the Bishop Slice Method: An Approach Combining Analytical and Numerical Analyses. Open Journal of Applied Sciences, 13, 1446-1456.
https://doi.org/10.4236/ojapps.2023.138115
[44]  Agbelele, K.J., Houehanou, E.C., Ahlinhan, M.F., Aristide, H.C., et al. (2023) Assessment of Slope Stability by the Fellenius Slice Method: Analytical and Numerical Approach. World Journal of Advanced Research and Reviews, 18, 1205-1214.
https://doi.org/10.30574/wjarr.2023.18.2.0874
[45]  Duncan, J.M. (1996) State of the Art: Limit Equilibrium and Finite-Element Analysis of Slopes. Journal of Geotechnical Engineering, 122, 577-596.
https://doi.org/10.1061/(ASCE)0733-9410(1996)122:7(577)
[46]  Baker, R. (1980) Determination of the Critical Slip Surface in Slope Stability Computations. International Journal for Numerical and Analytical Methods in Geomechanics, 4, 333-359.
https://doi.org/10.1002/nag.1610040405
[47]  Celestino, T.B. and Duncan, J.M. (1981) Simplified Search for Non-Circular Slip Surface. Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, 15-19 June 1981, 391-394.
[48]  Greco, V.R.and Gulla, G. (1985) Slip Surface Search in Slope Stability Analysis. Rivista Italiana di Geotecnica, 198, 189-198.
[49]  Van Uu Nguyen, M.A. (1985) Determination of Critical Slope Failure Surfaces. Journal of Geotechnical Engineering, 111, 238-250.
https://doi.org/10.1061/(ASCE)0733-9410(1985)111:2(238)
[50]  Li, K.S. and White, W. (1987) Rapid Evaluation of the Critical Slip Surface in Slope Stability Problems. International Journal for Numerical and Analytical Methods in Geomechanics, 11, 449-473.
https://doi.org/10.1002/nag.1610110503
[51]  Chen, Z.Y. (1992) Random Trials Used in Determining Global Minimum Factors of Safety of Slopes. Canadian Geotechnical Journal, 29, 225-233.
https://doi.org/10.1139/t92-026
[52]  Greco, V.R. (1987) Efficient Monte Carlo Technique for Locating Critical Slip Surface. Journal of Geotechnical Engineering, 122, 517-525.
https://doi.org/10.1061/(ASCE)0733-9410(1996)122:7(517)
[53]  Malkawi, A.I.H., Hassan, W.F. and Sarma, S.K. (2001) Global Search Method for Locating General Slip Surface Using Monte Carlo Techniques. Journal of Geotechnical and Geoenvironmental Engineering, 127, 688-698.
https://doi.org/10.1061/(ASCE)1090-0241(2001)127:8(688)
[54]  Cheng, Y.M. (2003) Location of Critical Failure Surface and Some Further Studies on Slope Stability Analysis. Computers and Geotechnics, 30, 255-267.
https://doi.org/10.1016/S0266-352X(03)00012-0
[55]  Fellenius, W. (1927) Erdstatische Berechnungen mit Reibung und Kohäsion (Adhäsion) und unter Annahme kreiszylindrischer Gleitflächen. W. Ernst & Sohn, Berlin.
[56]  Bishop, A.W. (1955) The Use of the Slip Circle in the Stability Analysis of Slopes. Geotechnique, 5, 7-17.
https://doi.org/10.1680/geot.1955.5.1.7
[57]  Lowe, J. and Karafiath, L. (1960) Stability of Earth Dams upon Drawdown. Proc. 1st Pan American Conference on Soil Mechanics and Foundation Engineering, Mexico City, 1960.
[58]  United States Army Corps of Engineers (1970) Stability of Earth and Rock-Fill Dams. United States Army Engineer Waterways Experiment Station, Vicksburg.
[59]  Morgenstern, N.R. and Price, V.E. (1965) The Analysis of the Stability of General Slip Surfaces. Geotechnique, 15, 79-93.
https://doi.org/10.1680/geot.1965.15.1.79
[60]  Spencer, E. (1967) A Method of Analysis of the Stability of Embankments Assuming Parallel Inter-Slice Forces. Geotechnique, 17, 11-26.
https://doi.org/10.1680/geot.1967.17.1.11
[61]  Janbu, N. (1968) Slope Stability Computations, Soil Mechanics and Foundation Engineering Report. Technical University of Norway, Trondheim.
[62]  Duncan, J.M., Buchignani, A.L. and DeWet, M. (1987) An Engineering Manual for Slope Stability Studies. Department of Civil Engineering, Geotechnical Engineering, Virginia Polytechnic Institute and State University, Blacksburg.
[63]  Alexis, A. (1987) Etude geotechnique et sedimentologique de souilles et chenaux de la rade de lorient: Contribution a la stabilite des sols immerges.
https://www.theses.fr/1987NANT2033
[64]  Zienkiewicz, O.C.H., Humpheson, C. and Lewis, R.W. (1975) Associated and Non-Associated Visco-Plasticity and Plasticity in Soil Mechanics. Geotechnique, 25, 671-689.
https://doi.org/10.1680/geot.1975.25.4.671
[65]  Naylor, D.J. (1982) Finite Elements and Slope Stability. In: Martins, J.B., Ed., Numerical Methods in Geomechanics, Springer, Dordrecht, 229-244.
[66]  Donald, I.B. and Giam, S.K. (1988) Application of the Nodal Displacement Method to Slope Stability Analysis. 5th Australia—New Zealand Conference on Geomechanics, Sydney, 22-23 August 1988, 456-460.
[67]  Matsui, T. and San, K.C. (1992) Finite Element Slope Stability Analysis by Shear Strength Reduction Technique. Soils and Foundations, 32, 59-70.
https://doi.org/10.3208/sandf1972.32.59
[68]  Ugai, K. and Leshchinsky, D.O.V. (1995) Three-Dimensional Limit Equilibrium and Finite Element Analyses: A Comparison of Results. Soils and Foundations, 35, 1-7.
https://doi.org/10.3208/sandf.35.4_1
[69]  Dawson, E.M., Roth, W.H. and Drescher, A. (1999) Slope Stability Analysis by Strength Reduction. Geotechnique, 49, 835-840.
https://doi.org/10.1680/geot.1999.49.6.835
[70]  Griffiths, D.V. and Lane, P.A. (1999) Slope Stability Analysis by Finite Elements. Geotechnique, 49, 387-403.
https://doi.org/10.1680/geot.1999.49.3.387
[71]  Jeremić, B. (2000) Finite Element Methods for 3D Slope Stability Analysis. Slope Stability 2000, 224-238.
https://doi.org/10.1061/40512(289)17
[72]  Zheng, H., Liu, D.F. and Li, C.G. (2005) Slope Stability Analysis Based on Elasto-Plastic Finite Element Method. International Journal for Numerical Methods in Engineering, 64, 1871-1888.
https://doi.org/10.1002/nme.1406
[73]  Yamagami, T. (1988) Search for Critical Slip Lines in Finite Element Stress Fields by Dynamic Programming. Proceeding 6th international Conference on Numerical Methods in Geomechanics, Innsbruck, 11-15 April 1988, 1347-1352.
[74]  Zou, J.Z., Williams, D.J. and Xiong, W.L. (1995) Search for Critical Slip Surfaces Based on Finite Element Method. Canadian Geotechnical Journal, 32, 233-246.
https://doi.org/10.1139/t95-026
[75]  Farias, M.M. and Naylor, D.J. (1998) Safety Analysis Using Finite Elements. Computers and Geotechnics, 22, 165-181.
https://doi.org/10.1016/S0266-352X(98)00005-6
[76]  Wang, C.H. (1999) Salient Aspects of Numerical Analyses of Rainfall Induced Slope Instability. Slope Stability Engineering, Routledge, London, 435-440.
https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6199473
[77]  Thiébot, J. (2004) Modélisation des phénomènes de consolidation et de glissement des sédiments cohésifs dans un estuaire. Rapport de DEA de l’Université de Caen.
[78]  Blumberg, A.F. and Mellor, G.L. (1987) A Description of a Three-Dimensional Coastal Ocean Circulation Model. Three-Dimensional Coastal Ocean Models, 4, 1-16.
[79]  Nicholson, J. and O’Connor, B.A. (1986) Cohesive Sediment Transport Model. Journal of Hydraulic Engineering, 112, 621-640.
https://doi.org/10.1061/(ASCE)0733-9429(1986)112:7(621)
[80]  Lang, G., Schubert, R., Markofsky, M., Fanger, H.U., Grabemann, I., Krasemann, H.L., Neumann, L.J.R. and Riethmüller, R. (1989) Data Interpretation and Numerical Modeling of the Mud and Suspended Sediment Experiment 1985. Journal of Geophysical Research: Oceans, 94, 14381-14393.
https://doi.org/10.1029/JC094iC10p14381
[81]  Lazure, P. and Jégou, A.M. (1998) 3D Modelling of Seasonal Evolution of Loire and Gironde Plumes on Biscay Bay Continental Shelf. Oceanologica Acta, 21, 165-177.
https://doi.org/10.1016/S0399-1784(98)80006-6
[82]  Cancino, L. and Neves, R. (1999) Hydrodynamic and Sediment Suspension Modelling in Estuarine Systems: Part I: Description of the Numerical Models. Journal of Marine Systems, 22, 105-116.
https://doi.org/10.1016/S0924-7963(99)00035-4
[83]  Phan, N.V. (2002) Modélisation numérique tridimensionnelle de la circulation générale, de l’intrusion saline et du transport sédimentaire dans l’estuaire de la Gironde (France).PhD Thesis, Caen-Normandy University.
https://www.theses.fr/2002CAEN2066
[84]  Boericke, R.R. and Hogan, J.M. (1977) An XY Hydraulic/Thermal Model for Estuaries. Journal of the Hydraulics Division, 103, 19-37.
https://doi.org/10.1061/JYCEAJ.0004686
[85]  Rodger, J. and Odd, N.W.M. (1985) A Mathematical Model of Mud Transport in Deep Partially Mixed Canalized Estuaries. Technical Report. Hydraulics Research Wallingford.
http://eprints.hrwallingford.com/id/eprint/78
[86]  Li, L. and Hua, Z. (1994) Modelisation numerique du transport des sediments remis en suspension dans un estuaire application a la Gironde.
https://www.theses.fr/1994PA066633
[87]  Sheng, Y.P. and Villaret, C. (1989) Modeling the Effect of Suspended Sediment Stratification on Bottom Exchange Processes. Journal of Geophysical Research: Oceans, 94, 14429-14444.
https://doi.org/10.1029/JC094iC10p14429
[88]  Brun-Cottan, J.C., Guillou, S. and Li, Z.H. (2000) Behaviour of a Puff of Resuspended Sediment: A Conceptual Model. Marine Geology, 167, 355-373.
https://doi.org/10.1016/S0025-3227(00)00027-X
[89]  Cole, P. and Miles, G.V. (1983) Two-Dimensional Model of Mud Transport. Journal of Hydraulic Engineering, 109, 1-12.
https://doi.org/10.1061/(ASCE)0733-9429(1983)109:1(1)
[90]  Teisson, C. and Latteux, B. (1986) A Depth-Integrated Bidimensional Model of Suspended Sediment Transport. Proceeding of the 3rd International Symposium on River Sedimentation, Jackson, 31 March-4 April 1986, 421.
[91]  Odd, N.V.M. and Cooper, A.J. (1989) A Two-Dimensional Model of the Movement of Fluid Mud in a High Energy Turbid Estuary. Journal of Coastal Research, No. 5, 185-193.
https://www.jstor.org/stable/25735376
[92]  Falconer, R.A. and Owens, P.H. (1990) Numerical Modelling of Suspended Sediment Fluxes in Estuarine Waters. Estuarine, Coastal and Shelf Science, 31, 745-762.
https://doi.org/10.1016/0272-7714(90)90080-B
[93]  Guillou, S. and Nguyen, K.D. (1999) An Improved Technique for Solving Two-Dimensional Shallow Water Problems. International Journal for Numerical Methods in Fluids, 29, 465-483.
https://doi.org/10.1002/(SICI)1097-0363(19990228)29:4<465::AID-FLD797>3.0.CO;2-H
[94]  Malcherek, A. (2000) Application of TELEMAC-2D in a Narrow Estuarine Tributary. Hydrological Processes, 14, 2293-2300.
https://doi.org/10.1002/1099-1085(200009)14:13<2293::AID-HYP29>3.0.CO;2-4
[95]  Nvm, O.D.D. and Owen, M.W. (1972) A Two Layer Model of Mud Transport in the Thames Estuary. Proceedings of the Institute of Civil Engineers, 51, 175-205.
https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCALGEODEBRGM732263036
[96]  Uncles, R.J. and Stephens, J.A. (1989) Distributions of Suspended Sediment at High Water in a Macrotidal Estuary. Journal of Geophysical Research: Oceans, 94, 14395-14405.
https://doi.org/10.1029/JC094iC10p14395
[97]  Le Hir, P. and Karlikow, N. (1991) Balance between Turbidity Maximum and Fluid Mud in the Loire Estuary. Lessons of a First Mathematical Modelling, Transport of Suspended Sediments and Its Mathematical Modelling. International Association for Hydro-Environment Engineering and Researc, Firenze.
[98]  Pedlosky, J. (2013) Geophysical Fluid Dynamics. Springer Science & Business Media, Berlin.
[99]  Guillou, S. (1996) Modelisation des ecoulements cotiers et estuariens. Etude mathematique et applications en coordonnees generalisees. Ph.D. Thesis.
https://www.theses.fr/1996PA066177
[100]  Brenon, I. (1997) Modélisation de la dynamique des sédiments fins dans l’estuaire de la Seine. Ph.D. Thesis, The Brest University, Brest.
https://doi.org/10.5150/jngcgc.1996.030-B
[101]  Tattersall, G.R., Elliott, A.J. and Lynn, N.M. (2003) Suspended Sediment Concentrations in the Tamar Estuary. Estuarine, Coastal and Shelf Science, 57, 679-688.
https://doi.org/10.1016/S0272-7714(02)00408-0
[102]  Lumborg, U. and Pejrup, M. (2005) Modelling of Cohesive Sediment Transport in a Tidal Lagoon—An Annual Budget. Marine Geology, 218, 1-16.
https://doi.org/10.1016/j.margeo.2005.03.015
[103]  Markofsky, M. and Ditschke, D. (2007) The COSINUS Database for Cohesive Sediment Transport in Estuaries and Coastal Zones. Proceedings in Marine Science, 8, 493-516.
https://doi.org/10.1016/S1568-2692(07)80029-5
[104]  Le Hir, P. (1994) Fluid and Sediment Integrated Modelling Basis of a 2DV Code and Application to Fluid Mud Flows in a Macrotidal Estuary. 4th Nearshore and Estuarine Cohesive Sediment Transport Conference, Wallingford, 11-15 July 1994, 1-12.
[105]  Vilaret, C., Teisson, C., Simonin, O. and Boeuf, C. (1996) Modélisation diphasique du transport de sédiments cohésifs. Actes des IVèmes Journes Nationales Gnie Ctier Gnie Civil, 425, 307-316.
https://doi.org/10.5150/jngcgc.1996.032-V
[106]  Greimann, B.P., Muste, M. and Holly Jr, F.M. (1999) Two-Phase Formulation of Suspended Sediment Transport. Journal of Hydraulic Research, 37, 479-500.
https://doi.org/10.1080/00221686.1999.9628264
[107]  Barbry, N. (2000) Modélisation du transport sédimentaire en milieux estuariens selon une approche diphasique. Ph.D. Thesis.
[108]  Barbry, N., Guillou, S. and Nguyen, K.D. (2000) Une approche diphasique pour le calcul du transport sédimentaire en milieux estuariens. Comptes Rendus de l’Académie des Sciences-Series IIB-Mechanics, 328, 793-799.
https://doi.org/10.1016/S1620-7742(00)01264-2
[109]  Hsu, T.J., Jenkins, J.T. and Liu, P.L.F. (2003) On Two-Phase Sediment Transport: Dilute Flow. Journal of Geophysical Research: Oceans, 108, 1-14.
https://doi.org/10.1029/2001JC001276
[110]  Jiang, J.S., Law, A.W.K. and Cheng, N.S. (2004) Two-Phase Modeling of Suspended Sediment Distribution in Open Channel Flows/Modélisation diphasique de la distribution de sédiments en suspension dans un écoulement à surface libre. Journal of Hydraulic Research, 42, 273-281.
https://doi.org/10.1080/00221686.2004.9641195
[111]  Amoudry, L.O., Hsu, T.J. and Liu, P.L.F. (2005) Schmidt Number and Near-Bed Boundary Condition Effects on a Two-Phase Dilute Sediment Transport Model. Journal of Geophysical Research: Oceans, 110, 1-12.
https://doi.org/10.1029/2004JC002798
[112]  Chauchat, J. (2007) Modélisation du transport sédimentaire par une approche diphasique; application à l’estuaire de la Seine. PhD Thesis, L'université de Caen, 213.
[113]  Krone, R.B. (1962) Flume Studies of the Transport of Sediment in Estuarial Shoaling Processes. Final Report, Hydraulic Engineering Laboratory and Sanitary Engineering Research Laboratory, University of California, Berkeley.
[114]  Partheniades, E. (1962) A Study of Erosion and Deposition of Cohesive Soils in Salt Water. Ph.D. Thesis, University of California, Berkeley.
[115]  Mehta, A.J. (1991) Understanding Fluid Mud in a Dynamic Environment. Geo-Marine Letters, 11, 113–118.
https://doi.org/10.1007/BF02430995
[116]  Teisson, C., Ockenden, M., Le Hir, P., Kranenburg, C. and Hamm, L. (1993) Cohesive Sediment Transport Processes. Coastal Engineering, 21, 105-128.
https://doi.org/10.1016/0378-3839(93)90047-C
[117]  Guesmia, M., Cheviet, C. and Macur, O. (2001) Modélisation hydrodynamique et hydrosédimentaire de l’estuaire de la Rance-Etude des scénarios de gestion de l’estuaire.
[118]  Lumborg, U. and Windelin, A. (2003) Hydrography and Cohesive Sediment Modelling: Application to the Rømø Dyb Tidal Area. Journal of Marine Systems, 38, 287-303.
https://doi.org/10.1016/S0924-7963(02)00247-6
[119]  Petersen, O. and Vested, H.J. (2002) Description of Vertical Exchange Processes in Numerical Mud Transport Modelling. Proceedings in Marine Science, 5, 375-391.
https://doi.org/10.1016/S1568-2692(02)80028-6
[120]  Teisson, C. (1991) Cohesive Suspended Sediment Transport: Feasibility and Limitations of Numerical Modeling. Journal of Hydraulic Research, 29, 755-769.
https://doi.org/10.1080/00221689109498957
[121]  Sanchez-Angulo, M. (1992) Modélisation dans un estuaire à marée. Rôle du bouchon vaseux dans la tenue des sols sous marins.
https://www.theses.fr/1992NANT2063
[122]  Thiébot, J., Besq, A., Qi, X., Guillou, S. and Brun-Cottan, J.C. (2006) Sédimentation et consolidation des sédiments cohésifs estuariens: Influence des propriétés rhéologiques. 41ème Colloque Annuel de Groupe Français de Rhéologie, Cherbourg, Octobre 2006.
[123]  Le Hir, P., Bassoullet, P. and L’Yavanc, J. (1989) New Developments about Mud Transport Models. Application to a Macrotidal Estuary. Sediment Transport Modeling, 94-99.
[124]  Waeles, B. (2005) Modélisation morphodynamique de l’embouchure de la Seine. Ph.D Thesis, Université de Caen Basse-Normandie, Caen.
https://archimer.ifremer.fr/doc/2005/these-2195.pdf

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133