A process of idea filtration in two distinct streams of physics i.e., 1) The dimensionality perspective of spacetime, and 2) The quantum perspective leads us to an understanding of what might be a true reality of all that we perceive. The conclusions arrived at in this paper are a bit perplexing in the sense that our perceived reality could be a manifestation of a combination of 4D + n (n > 0) flat space-time, universal wave function, and cognizance. The work is based on a review and analysis of the main concepts in quantum theory, relativistic physics, and cosmology. Key ideas and conclusions are filtered and logically connected to arrive at what might be a view of the true reality. A significant part of the paper is dedicated to the concept of the “observer” and the “ability of cognizance” that should accompany the “observer”. Though the “observer” is central to modern physics, it is not known what constitutes observation, and the term observer, often open to interpretations, does not have a standard definition and hence, is lacking in clarity. In our analysis, we have argued that the environment, in which the observer-observed system is embedded, emerges as an all-knowing, cognizant, and ideal observer that has the knowledge of the observer-observed system. At a philosophical level, we link to the fundamentals of physics, “consciousness” or “ability of cognizance” as an unavoidable and key element in not only carrying out the observation but perhaps, as believed by many, having a role in shaping the reality perceived. In the review and analysis of another stream of physics, that of General Theory of Relativity (GTR) and cosmology, we examine the question of reality from a cosmological and dimensionality perspective. Research on the 4D and 5D constructs of the universe indicates that the “reality” perceived in 4D spacetime as matter, distance, time, etc., is a manifestation of a higher dimensional 4D + n (n > 0) reality. Theoretical research on this front points towards a 4D-spacetime embedded in a 5D or higher dimensional flat space with matter and energy being a manifestation of the higher dimensions. The flow of logic in this paper leans towards a view of an ultimate true reality that is flat 4D + n (n > 0) space combined with cognizance, universal wave function, and the environment.
References
[1]
Abbott, B. P., Abbott, R., Abbott, T. D. et al. (2016a). GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 116, Article 241103.
[2]
Abbott, B. P., Abbott, R., Abbott, T. D. et al. (2016b). Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116, Article 061102. https://doi.org/10.1142/9789814699662_0011
[3]
Aerts, D. (2001). The Stuff the World Is Made of: Physics and Reality. arXiv:quant-ph/0107044.
[4]
Aharonov, Y., & Bohm, D. (1959). Significance of Electromagnetic Potentials in the Quantum Theory. Physical Review, 115, 485-491. https://doi.org/10.1103/PhysRev.115.485
[5]
Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., & Cornell, E. A. (1995). Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science, 269, 198-201. https://doi.org/10.1126/science.269.5221.198
[6]
Angélil, R., & Saha, P. (2010). Relativistic Redshift Effects and the Galactic-Center Stars. The Astrophysical Journal, 711, 157. https://doi.org/10.1088/0004-637X/711/1/157
[7]
Arkani-Hamed, N., Dimopoulos, S., & Dvali, G. (1998). The Hierarchy Problem and New Dimensions at a Millimeter. Physics Letters B, 429, 263-272. https://doi.org/10.1016/S0370-2693(98)00466-3
[8]
Arons, A. B., & Preppard, M. B. (1965). Einsteins Proposal of the Photon Concept—A Translation of the Annalen der Physik Paper of 1905. American Journal of Physics, 33, 367-374. https://doi.org/10.1119/1.1971542
[9]
Aspect, A. (1976). Proposed Experiment to Test the Nonseparabihty of Quantum Mechanics. Physical Review D, 14, 1944-1951. https://doi.org/10.1103/PhysRevD.14.1944
[10]
Aubrun, G., Szarek, S. J., & Ye, D. (2011). Entanglement Thresholds for Random Induced States. arXiv:1106.2264.
[11]
Bach, R. et al. (2013). Controlled Double-Slit Electron Diffraction. New Journal of Physics, 15, Article 033018. https://doi.org/10.1088/1367-2630/15/3/033018
[12]
Bahcall, N. A. (2015). Hubble’s Law and the Expanding Universe. Proceedings of the National Academy of Sciences of the United States of America, 112, 3173-3175. https://doi.org/10.1073/pnas.1424299112
[13]
Ball, P. (2022). Experiments Spell Doom for Decades-Old Explanation of Quantum Weirdness. https://www.quantamagazine.org/physics-experiments-spell-doom-for-quantum-collapse-theory-20221020/
[14]
Baluška, F. (Ed.) (2009). Plant-Environment Interactions, Signaling and Communication in Plants (p. 247). Springer-Verlag. https://doi.org/10.1007/978-3-540-89230-4_13
[15]
Barrett, J. (2018). Everett’s Relative-State Formulation of Quantum Mechanics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Winter 2018 ed.). Stanford University. https://plato.stanford.edu/archives/win2018/entries/qm-everett/
[16]
Beierle, P. J. et al. (2018). Experimental Test of Decoherence Theory Using Electron Matter Waves. New Journal of Physics, 20, Article 113030. https://doi.org/10.1088/1367-2630/aaed4e
[17]
Bell, J. S. (1964). On the Einstein Podolsky Rosen Paradox. Physics, 1, 195-290. https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
[18]
Bhattacharya, G. (2017). Hierarchy Problem and BSM Physics. Pramana—Journal of Physics, 89, Article No. 53. https://doi.org/10.1007/s12043-017-1448-2
[19]
Bohr, N. (1913). On the Constitution of Atoms and Molecules. Philosophical Magazine, 26, 1-25. https://doi.org/10.1080/14786441308634955
[20]
Bohr, N. (1923). The Structure of the Atom. Nature, 112, 29-44. https://doi.org/10.1038/112029a0
[21]
Born, M. (1926). Zur Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik, 37, 863-867. https://doi.org/10.1007/BF01397477
[22]
Bouwmeester, D., Pan, J. W., Mattle, K. et al. (1997). Experimental Quantum Teleportation. Nature, 390, 575-579. https://doi.org/10.1038/37539
[23]
Brasil, C. A., & de Castro, L. A. (2015). Understanding the Pointer States. European Journal of Physics, 36, Article 065024. https://doi.org/10.1088/0143-0807/36/6/065024
Carrol, S. (2022). Something Deeply Hidden: Quantum Worlds and the Emergence of Spacetime. One World Publication.
[26]
Castelvecchi, D. (2020). Mystery of Universe’s Expansion deepens with Fresh Data. Nature, 583, 500-501. https://doi.org/10.1038/d41586-020-02126-6
[27]
Chalmers, D. J. (2011). A Computational Foundation for the Study of Cognition. Journal of Cognitive Science, 12, 323-357. https://doi.org/10.17791/jcs.2011.12.4.325
[28]
Clauser, J. F., Horne, M. A., Shimony, A., & Holt, R. A. (1969). Proposed Experiment to Test Local Hidden-Variable Theories. Physical Review Letters, 23, 880-884. https://doi.org/10.1103/PhysRevLett.23.880
[29]
Coles, P. (2019). Einstein, Eddington and the 1919 Eclipse. Nature, 568, 306-307. https://doi.org/10.1038/d41586-019-01172-z
[30]
Crull, E., & Bacciagaluppi, G. (2022). Translation of: W. Heisenberg, ‘Ist eine deterministische Ergänzung der Quantenmechanik möglich?’ https://pure.abdn.ac.uk/ws/portalfiles/portal/20705242/Heis1935_EPR_Final_translation.pdf
[31]
Dainotti, M. G. et al. (2021). On the Hubble Constant Tension in the SNe Ia Pantheon Sample. The Astrophysical Journal, 912, 150. https://doi.org/10.3847/1538-4357/abeb73
[32]
Davisson, C. J. (1955). Wave Properties of Electrons. Reviews of Modern Physics, 27, 1-6.
[33]
Davisson, C. J., & Germer, L. H. (1927). The Scattering of Electrons by a Single Crystal of Nickel. Nature, 119, 558-560. https://doi.org/10.1038/119558a0
[34]
Dewitt, B. S., & Graham, N. (Eds.) (1973). The Many-Worlds Interpretation of Quantum Mechanics: A Fundamental Exposition. A Fundamental Exposition by Hugh Everett, III, with Papers by J. A. Wheeler, B. S. Dewitt, l. N. Cooper and D. Van Vechten, and N. Graham. Princeton University Press. https://cqi.inf.usi.ch/qic/everett_phd.pdf
[35]
Dirac, P. A. M. (1928). The Quantum Theory of the Electron. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 117, 610-624. https://doi.org/10.1098/rspa.1928.0023
[36]
Dirac, P. A. M. (1947). The Principles of Quantum Mechanics (3rd ed.). Clarendon Press.
[37]
Do, T. et al. (2019). Relativistic Redshift of the Star S0-2 Orbiting the Galactic Center Supermassive Black Hole. Science, 365, 664-668. https://doi.org/10.1126/science.aav8137
[38]
Dyson, F. W., Eddington, A. S., & Davidson, C. (1920). A Determination of the Deflection of Light by the Sun’s Gravitational Field, from Observations Made at the Total Eclipse of May 29, 1919. Philosophical Transactions of the Royal Society of London. Series A, 220, 291-333. https://doi.org/10.1098/rsta.1920.0009
[39]
Einstein, A. (1905a) On the Electrodynamics of Moving Bodies. In D. C. Cassidy, J. Renn, & R. Schulmann (Eds.), The Swiss Years: Writings, 1900-1909 (English Translation Supplement) in the Collected Papers of Albert Einstein (Vol. 2, pp. 275-309). Princeton University Press.
[40]
Einstein, A. (1905b). über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik, 17, 132-148. https://doi.org/10.1002/andp.19053220607
[41]
Einstein, A. (1905c). Zur Elektrodynamik bewegter Körper. Annalen der Physik, 17, 891-921. https://doi.org/10.1002/andp.19053221004
[42]
Einstein, A. (1920). Relativity: The Special and General Theory. Lawson, R.W., Trans., Henry Holt & Company.
[43]
Einstein, A., Podolsky, B., & Rosen, N. (EPR) (1935). Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47, 777-780. https://doi.org/10.1103/PhysRev.47.777
[44]
Faye, J. (2019).Copenhagen Interpretation of Quantum Mechanics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Winter 2019 ed.). Stanford University. https://plato.stanford.edu/archives/win2019/entries/qm-copenhagen/
[45]
Faye, J. (2022). Copenhagen Interpretation of Quantum Mechanics. In Stanford Encyclopedia of Philosophy. Stanford University. https://plato.stanford.edu/entries/qm-copenhagen/
Fields, C. (2018). If Physics Is an Information Science, What Is an Observer? arXiv:1108.4865
[48]
Goedel, K. (1931). über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, 38, 173-198. https://doi.org/10.1007/BF01700692
[49]
Greene, B. (2011). The Hidden Reality: Parallel Universes and the Deep Laws of the Cosmos. Penguin Group.
[50]
Gupta, R. P. (2023). JWST Early Universe Observations and ΛCDM Cosmology. Monthly Notices of the Royal Astronomical Society, 524, 3385-3395. https://doi.org/10.1093/mnras/stad2032
[51]
Hameroff, S., & Penrose, R. (2014). Consciousness in the Universe: A Review of the ‘Orch OR’ Theory. Physics of Life Reviews, 11, 39-78. https://doi.org/10.1016/j.plrev.2013.08.002
[52]
Hartle, J. B. (2011). The Quasiclassical Realms of This Quantum Universe. Foundations of Physics, 41, 982-1006. https://doi.org/10.1007/s10701-010-9460-0
[53]
Hawkings, S. (1998). A Brief History of Time, Chapter 4.
[54]
Heisenberg, W. (1925). über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik, 33, 879-893. https://doi.org/10.1007/BF01328377
[55]
Heisenberg, W. (1927). über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43, 172-198. https://doi.org/10.1007/BF01397280
[56]
Hossain, J. (2022). Standard Model Review and a New 5D Multi-Brane Proposition. Journal of High Energy Physics, Gravitation, and Cosmology, 8, 195-227. https://doi.org/10.4236/jhepgc.2022.81015
[57]
Hubble, E. (1929). A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae. Proceedings of the National Academy of Sciences of the United States of America, 15, 168-173. https://doi.org/10.1073/pnas.15.3.168
[58]
Janssen, M., & Renn, J. (2021). Einstein and the Perihelion Motion of Mercury—Excerpts from How Einstein Found His Field Equations. arXiv:2111.11238
[59]
Kaluza, Th. (2018). On the Unification Problem in Physics. International Journal of Modern Physics D, 27, Article ID: 1870001. https://doi.org/10.1142/S0218271818700017
[60]
Klien, O. (1926). The Atomicity of Electricity as a Quantum Theory Law. Nature, 118, 516. https://doi.org/10.1038/118516a0
[61]
Klitzing, K. V., Dorda, G., & Pepper, M. (1980). New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance. Physical Review Letters, 45, 494-497. https://doi.org/10.1103/PhysRevLett.45.494
[62]
Lamb, W. E., & Retherford, R. C. (1947). Fine Structure of the Hydrogen Atom by a Microwave Method. Physical Review, 72, 241-243. https://doi.org/10.1103/PhysRev.72.241
Lidsey, J. E., Romero, C., Tavakol, R., & Rippl, S. (1997). On Applications of Campbell’s Embedding Theorem. Classical and Quantum Gravity, 14, 865. https://doi.org/10.1088/0264-9381/14/4/005
[65]
Mann, R. (2010). An Introduction to Particle Physics and the Standard Model. Taylor and Francis Group. https://doi.org/10.1201/9781420083002
[66]
Martens, H. (1991). The Uncertainty Principle. PhD Thesis 1 (Research TU/e/Graduation TU/e, Applied Physics, Technische Universiteit Eindhoven.
[67]
Pahlavani, M. R. (2012). Theoretical Concepts of Quantum Mechanics. InTech. https://doi.org/10.5772/2075
[68]
Pauli, W. (1925). über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektren. Zeitschrift für Physik, 31, 765-783. https://doi.org/10.1007/BF02980631
[69]
Peebles, P. J. E. (1993). Principles of Physical Cosmology. Princeton University Press.
[70]
Penrose, R. (2012). The Basic Ideas of Conformal Cyclic Cosmology. AIP Conference Proceedings, 1446, 233-243. https://doi.org/10.1063/1.4727997
[71]
Peres, A. (2002). Quantum Theory: Concepts and Methods. Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47120-5
[72]
Planck Collaboration (2013). Planck 2013 Results. I. Overview of Products and Scientific Results. arXiv:1303.5062
[73]
Planck, M. (1900). On the Law of Distribution of Energy in the Normal Spectrum. Annalen der Physik, 309, 553-563. https://doi.org/10.1002/andp.19013090310
[74]
Randall, L., & Sundrum, R. (1999). A Large Mass Hierarchy from a small Extra Dimension. Physical Review Letters, 83, 3370-3373. https://doi.org/10.1103/PhysRevLett.83.3370
[75]
Rauch, H., Treimer, W., & Bonse, U. (1974). Test of a Single Crystal Neutron Interferometer. Physics Letters A, 47, 369-371. https://www.sciencedirect.com/science/article/pii/0375960174901327 https://doi.org/10.1016/0375-9601(74)90132-7
[76]
Robson, B. A. (2019). Introductory Chapter: Standard Model of Cosmology. In B. A. Robson (Ed.), Redefining Standard Model Cosmology (pp. 1-4). IntechOpen. https://doi.org/10.5772/intechopen.85605
[77]
Ryder, L. (2009). Introduction to General Relativity. Cambridge University Press. https://doi.org/10.1017/CBO9780511809033
[78]
Saha, M. N., & Bose, S. N. (1920). The Principle of Relativity: Original Papers by A. Einstein and H. Minkowski (p. 34). University of Calcutta.
[79]
Sassoli de Bianchi, M. (2013). The Observer Effect. Foundations of Science, 18, 213-243. https://doi.org/10.1007/s10699-012-9298-3
[80]
Schlosshauer, M. (2004). Decoherence, the Measurement Problem, and Interpretations of Quantum Mechanics. Reviews of Modern Physics, 76, 1267-1305. https://doi.org/10.1103/RevModPhys.76.1267
[81]
Schlosshauer, M. (2007). Decoherence and the Quantum to Classical Transition. Springer.
[82]
Shor, P. W. (1994). Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science (pp. 124-134). IEEE. https://doi.org/10.1109/SFCS.1994.365700
[83]
Tavabi, A. H., Boothroyd, C. B., Yücelen, E. et al. (2019). The Young-Feynman Controlled Double-Slit Electron Interference Experiment. Scientific Reports, 9, Article No. 10458. https://doi.org/10.1038/s41598-019-43323-2
[84]
The Higgs Boson (2022). https://home.cern/science/physics/higgs-boson
[85]
Tong, D. (2006). Quantum Field Theory. https://www.damtp.cam.ac.uk/user/tong/qft/one.pdf
[86]
Trimmer, J. D. (1980). The Present Situation in Quantum Mechanics: A Translation of Schrödinger’s “Cat Paradox” Paper. Proceedings of the American Philosophical Society, 124, 323-338.
[87]
Weinberger, P. (2006). Revisiting Louis de Broglie’s Famous 1924 Paper in the Philosophical Magazine. Philosophical Magazine Letters, 86, 405-410. https://doi.org/10.1080/09500830600876565
[88]
Wells, H. G. (2023). The Country of the Blind. http://www.thatmarcusfamily.org/philosophy/Amusements/Wells.pdf
[89]
Wesson, P. S. (2008). Mass and Machian General Relativity. https://arxiv.org/abs/0811.2529
[90]
Wesson, P. S. (2012). Astronomy and the Fifth Dimension. The Observatory, 132, 372-376.
[91]
Wesson, P. S. (2015). The Status of Modern Five-Dimensional Gravity: A Short Review: Why Physics Needs the Fifth Dimension. International Journal of Modern Physics D, 24, Article 1530001. https://doi.org/10.1142/S0218271815300013
[92]
Wesson, P. S., & de Leon, J P. (1995). The Equation of Motion in Kaluza Klien Cosmology and Its Implications for Cosmology. Astronomy and Astrophysics, 294, 1-7.
[93]
Wesson, P. S., & Overduin, J. M. (2013). Scaling Relations for the Cosmological “Constant” in Five-Dimensional Relativity. Advances in High Energy Physics, 2013, Article ID: 214172. https://doi.org/10.1155/2013/214172
[94]
Weyl, H. (1918). Gravitation and Electricity (p. 465). Sitzungsber. Preuss. Akad. Wiss.
[95]
Zurek, W. H. (1998). Decoherence, Einselection and the Existential Interpretation (the Rough Guide). Philosophical Transactions of the Royal Society A, 365, 1793-1821. https://doi.org/10.1098/rsta.1998.0250
[96]
Zurek, W. H. (2003). Decoherence, Einselection, and the Quantum Origins of the Classical. Reviews of Modern Physics, 75, 715-775. https://doi.org/10.1103/RevModPhys.75.715