全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Biodiesel Production from Rhynchophorus ferrugineus Larvae Oil: Physichochemical Properties and Acid Composition of Oil as Affected by Oil Extraction Protocol

DOI: 10.4236/jsbs.2023.134007, PP. 117-130

Keywords: Biodiesel, Extraction Process, Fatty Acid Composition, Physico-Chemical Properties, Rhynchophorus ferrugineus Larvae

Full-Text   Cite this paper   Add to My Lib

Abstract:

Biodiesel, a renewable energy source made from natural oils and fats, can be produced using white raffia larvae as a raw material. These larvae have a high lipid content and a short life cycle, making them suitable for this purpose. One crucial step in biodiesel production is oil extraction, and this study aimed to investigate how the extraction protocol affects the fuel properties of the oil. To study the impact of solvent type, solvent volume, and residence time on oil yield, 200 grams of Rhynchophorus ferrugineus were used in a Soxhlet extractor. The researchers examined the physicochemical properties and fatty acid composition of the crude grease using the European biodiesel standard (EN14214) and gas chromatography methods, respectively. The study found that hexane as a solvent produced the highest oil yield (64.44%) during a four-hour extraction period with a solvent ratio of 300 ml. Furthermore, the hexane-extracted oil had the highest iodine number (3.02 g/100 g) and cetane number (55.69). These values indicate favorable properties for biodiesel production. The Rhynchophorus ferrugineus larvae oil proved to be a rich source of monounsaturated fatty acids (76%), which were found to be significantly affected by the solvent type. Based on quality assessment, Rhynchophorus ferrugineus can be suitable for biodiesel production. In summary, under the given operational conditions, hexane is the most suitable solvent for Rhynchophorus ferrugineus oil extraction for biodiesel production. Further research in optimizing the extraction process can contribute to the efficient utilization of renewable energy sources like white raffia larvae for biodiesel production.

References

[1]  Ogunkunle, O. and Ahmed, N.A. (2019) A Review of Global Current Scenario of Biodiesel Adoption and Combustion in Vehicular Diesel Engines. Energy Reports, 5, 1560-1579.
https://doi.org/10.1016/j.egyr.2019.10.028
[2]  Kasirajan, R. (2021) Biodiesel Production by Two Step Process from an Energy Source of Chrysophyllum albidum Oil Using Homogeneous Catalyst. South African Journal of Chemical Engineering, 37, 161-166.
https://doi.org/10.1016/j.sajce.2021.05.011
[3]  Hafeez, S., Al-Salem, S.M., Manos, G. and Constantinou, A. (2020) Fuel Production Using Membrane Reactors: A Review. Environmental Chemistry Letters, 18, 1477-1490.
https://doi.org/10.1007/s10311-020-01024-7
[4]  Al-Muhtaseb, A.H., Osman, A.I., Murphin Kumar, P.S., Jamil, F., Al-Haj, L., Al Nabhani, A., Kyaw, H.H., Myint, M.T.Z., Mehta, N. and Rooney, D.W. (2021) Circular Economy Approach of Enhanced Bifunctional Catalytic System of CaO/CeO2 for Biodiesel Production from Waste Loquat Seed Oil with Life Cycle Assessment Study. Energy Conversion and Management, 236, Article ID: 114040.
https://doi.org/10.1016/j.enconman.2021.114040
[5]  Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V., Handa, C., Kheshgi, H., Kobayashi, S., Kriegler, E., et al. (2023) Mitigation Pathways Compatible with 1.5 °C in the Context of Sustainable Development.
https://www.ipcc.ch/site/assets/uploads/sites/2/2022/06/SR15_Chapter_2_LR.pdf
[6]  Li, W., Li, Q., Zheng, L., Wang, Y., Zhang, J., Yu, Z. and Zhang, Y. (2015) Potential Biodiesel and Biogas Production from Corncob by Anaerobic Fermentation and Black Soldier Fly. Bioresource Technology, 194, 276-282.
https://doi.org/10.1016/j.biortech.2015.06.112
[7]  Fatih, M.D., Mustafa, B. and Havva, B. (2011) Biowastes-to-Biofuels. Energy Conversion and Management, 52, 1815-1828.
https://doi.org/10.1016/j.enconman.2010.10.041
[8]  Lu, H., Liu, Y., Zhou, H., Yang, Y. and Chen, M. (2009) Production of Biodiesel from Jatropha curcas L Oil. Computers & Chemical Engineering, 33, 1091-1096.
https://doi.org/10.1016/j.compchemeng.2008.09.012
[9]  Shakeel, A., Khan, R., Mir, Z., Hussain, S. and Prasad, C. (2009) Prospects of Biodiesel Production from Microalgae in India. Renewable and Sustainable Energy Reviews, 13, 2361-2372.
https://doi.org/10.1016/j.rser.2009.04.005
[10]  Li, Q., Zheng, L., Cai, H., Garza, E., Yu, Z. and Zhou, S. (2011) From Organic Waste to Biodiesel: Black Soldier Fly, Hermetia illucens, Makes It Feasible. Fuel, 90, 1545-1548.
https://doi.org/10.1016/j.fuel.2010.11.016
[11]  Wang, H., Rehman, K., Liu, X., Yang, Q.Q., Zheng, L.Y., Li, W., Cai, M.M., Li, Q., Zhang, J.B. and Yu, Z.N. (2017) Insect Biorefinery: A Green Approach for Conversion of Crop Residues into Biodiesel and Protein. Biotechnology for Biofuels, 10, Article No. 304.
https://doi.org/10.1186/s13068-017-0986-7
[12]  Monzenga L, Jean-Claude. (2015) Ecologie appliquée de Rhynchophorus phoenicis Fabricius (Dryophthoridae: Coleoptera): Phénologie et optimisation des conditions d'élevage à Kisangani, R.D. Congo.
http://hdl.handle.net/2078.1/157580
[13]  Womeni, M.O., Linder, M., Tiencheu, B., Mbiapo, F.T., Tchouanguep, F. and Villeneuve, J.F. (2009) Oils of Insects and Larvae Consumed in Africa: Potential Sources of Polyunsaturated Fatty Acids. Oilseeds and Fats, Crops and Lipids, 16, 230-235.
https://doi.org/10.1051/ocl.2009.0279
[14]  Tangka, J.K., Esther, A.F. and Boris, M.D.K. (2020) Evaluation of Raffia Palm Weevil Larvae (Rhynchophorus phoenicis) as a Potential Biodiesel Resource. Journal of Advances in Biology & Biotechnology, 23, 36-43.
https://doi.org/10.9734/jabb/2020/v23i830173
[15]  Atabani, A., Silitonga, A., Badruddin, I.A., Mahlia, T., Masjuki, H. and Mekhilef, S.A. (2012) Comprehensive Review on Biodiesel as an Alternative Energy Resource and Its Characteristics. Renewable and Sustainable Energy Reviews, 16, 2070-2093.
https://doi.org/10.1016/j.rser.2012.01.003
[16]  Shivani, P., Khushbu, P., Faldu, N., Thakkar, V. and Shubramanian, R. (2011) Extraction and Analysis of Jatropha curcas L. Seed Oil. African Journal of Biotechnology, 10, 18210-18213.
https://doi.org/10.5897/AJB11.776
[17]  Oladipo, B. and Betiku, E. (2019) Process Optimization of Solvent Extraction of Seed Oil from Moringa oleifera: Anappraisal of Quantitative and Qualitative Process Variables on Oil Quality Using D-Optimal Design. Biocatalysis and Agricultural Biotechnology, 20, Article ID: 101187.
https://doi.org/10.1016/j.bcab.2019.101187
[18]  Ajala, S.O. and Betiku, E. (2015) Yellow Oleander Seed Oil Extraction Modeling and Process Parameters Optimization: Performance Evaluation of Artificial Neural Network and Response Surface Methodology. Journal of Food Processing and Preservation, 39, 1466-1474.
https://doi.org/10.1111/jfpp.12366
[19]  Abdolshahi, A., Majd, M.H., Rad, J.S., Taheri, M., Shabani, A. and Da Silva, J.A.T. (2015) Choice of Solvents Extraction Technique Affects Fatty Acid Composition of Pistachio (Pistacia vera L.) Oil. Journal of Food Science and Technology, 52, 2422-2427.
https://doi.org/10.1007/s13197-013-1183-8
[20]  Attah, J.C. and Ibemesi, J.A. (1990) Solvent Extraction of the Oils of Rubber, Melon, Pumpkin and Oilbean Seeds. Journal of the American Oil Chemists’ Society, 67, 25-27.
https://doi.org/10.1007/BF02631384
[21]  Ntalikwa, J.W. (2021) Solvent Extraction of Jatropha Oil for Biodiesel Production: Effects of Solvent-to-Solid Ratio, Particle Size, Type of Solvent, Extraction Time, and Temperature on Oil Yield. Journal of Renewable Energy, 2021, Article ID: 9221168.
https://doi.org/10.1155/2021/9221168
[22]  Aljuhaimi, F., Ghafoor, K., Musa Özcan, M., Miseckaite, O., Babiker, E. and Hussain, S. (2018) The Effect of Solvent Type and Roasting Processes on Physico-Chemical Properties of Tigernut (Cyperus esculentus L.) Tuber Oil. Journal of Oleo Science, 67, 823-828.
https://doi.org/10.5650/jos.ess17281
[23]  Adejumo, B.A., Inaede, S.G. and Adamu, T.S. (2013) Effect of Moisture Content on the Yield and Characteristics of Oil from Moringa oleifera Seeds. Academic Research International, 4, 160-170.
http://www.savap.org.pk/
[24]  Jayanegara, A., Gustanti, R., Ridwan, R. and Widyastuti, Y. (2020) Fatty Acid Profiles of Some Insect Oils and Their Effects on in vitro Bovine Rumen Fermentation and Methanogenesis. Italian Journal of Animal Science, 19, 1310-1317.
https://doi.org/10.1080/1828051X.2020.1841571
[25]  Asmare, M. and Gabbiye, N. (2014) Synthesis and Characterization of Biodiesel from Castor Bean as Alternative Fuel for Diesel Engine. American Journal of Energy Engineering, 2, 1-15.
https://doi.org/10.11648/j.ajee.20140201.11
[26]  Ogbunugafor, H., Eneh, F., Ozumba, A., Igwo-Ezikpe, M., Okpuzor, J., Igwilo, I., Adenekan, S. and Onyekwelu, O. (2011) Physico-Chemical and Antioxidant Properties of Moringa oleifera Seed Oil. Pakistan Journal of Nutrition, 10, 409-414.
https://doi.org/10.3923/pjn.2011.409.414
[27]  Molla, A. and Nigus, G. (2014) Synthesis and Characterization of Biodiesel from Castor Bean as Alternative Fuel for Diesel Engine. American Journal of Energy Engineering, 1, 1-15.
[28]  Rhiad, A., Liazid, A. and Tazerout, M. (2012) Etudes comparatives de deux plantes oléagineuses locales pour la production du biodiesel en Algérie. Revue des Energies Renouvelables SIENR, 12, 19-22.
[29]  Wong, C.Y., Lim, J.W., Uemura, Y., Chong, F.K., Yeong, Y.F., Mohamad, M. and Hermansyah, H. (2018) Insect-Based Lipid for Biodiesel Production. AIP Conference Proceedings, 2016, Article ID: 020150.
https://doi.org/10.1063/1.5055552
[30]  Chatepa, C.E.L. and Kingsley, M. (2019) The Influence of Solvent’s Polarity on Physicochemica Properties and Oil Yield Extracted from Pumpkin (Cucurbita maxima) Seed. Journal of Agricultural Biotechnology and Sustainable Development, 11, 40-47.
https://doi.org/10.5897/JABSD2019.0354
[31]  Haile, M., Duguma, H.T., Chameno, G. and Kuyu, C.G. (2019) Effects of Location and Extraction Solvent on Physico Chemical Properties of Moringa stenopetala Seed Oil. Heliyon, 5, E02781.
https://doi.org/10.1016/j.heliyon.2019.e02781
[32]  Bayisa, Y.M. and Bullo, T.A. (2021) Optimization and Characterization of Oil Extracted from Croton macrostachyus Seed for Antimicrobial Activity Using Experimental Analysis of Variance. Heliyon, 7, E08095.
https://doi.org/10.1016/j.heliyon.2021.e08095
[33]  Ntalikwa, J.W. (2021).Solvent Extraction of Jatropha Oil for Biodiesel Production: Effects of Solvent-to-Solid Ratio, Particle Size, Type of Solvent, Extraction Time, and Temperature on Oil Yield. Journal of Renewable Energy, 2021, Article ID: 9221168.
https://doi.org/10.1155/2021/9221168
[34]  Jedidi, B., Mokbli, S., Sbihi, H.M., et al. (2020) Effect of Extraction Solvents on Fatty Acid Composition and Physicochemical Properties of Tecoma stans Seed Oils. Journal of King Saud University—Science, 32, 2468-2473.
https://doi.org/10.1016/j.jksus.2020.03.044
[35]  Ramos, M.J., Fernandez, C.M., Casas, A., Rodriguez, L. and Perez, A. (2009) Influence of Fatty Acid Composition of Raw Materials on Biodiesel Properties. Bioresource Technology, 100, 261-268.
https://doi.org/10.1016/j.biortech.2008.06.039
[36]  Meher, L.C., Vidya Sagar, D. and Naik, S.N. (2006) Technical Aspects of Biodiesel Production by Transesterification: A Review. Renewable and Sustainable Energy Reviews, 10, 248-268.
https://doi.org/10.1016/j.rser.2004.09.002
[37]  Chanida, L., Vittaya, P., Sonthichai, C. and Anuruck, A. (2015) Relationship between Fatty Acid Composition and Biodiesel Quality for Nine Commercial Palm Oils. Songklanakarin Journal of Science and Technology, 37, 389-395.
[38]  Aknam, P., Pinsuwan, S. and Amnuaikit, T. (2018) The Effect of Extraction Methods on the Physicochemical Properties of Para-Rubber Seed Oil and Manufacturing Worthiness for Used as a Cosmetic Ingredient. Chiang Mai Journal of Science, 45, 440-453.
[39]  Ehounou, G.P., San-Whouly, M.O., Doudjo, S. and Micael, E.B. (2019) Nutrient Contributions of Rhynchophorus phoenicis Fabricius, 1801 (Coleoptera: Curculionidae), Very Appreciated Larvae in Côte d’Ivoire Compared with Beef (N’Dama Breed) and Thon (Thunnus thynnus). International Journal of Biological and Chemical Sciences, 13, 2092-2103.
https://doi.org/10.4314/ijbcs.v13i4.16
[40]  Cissé, M., Sow, A., Poucheret, P., Margout, D., Ayessou, N., Faye, P., Sakho, M. and Diop, C. (2018) Impact of Extraction Method on Physicochemical Characteristics and Antioxidant Potential of Adansonia digitata Oil. Food and Nutrition Sciences, 9, 937-955.
https://doi.org/10.4236/fns.2018.98069
[41]  Bello, M.O., Akindele, T.L., Adeoye, D.O. and Oladimeji, A.O. (2011) Pysicochemical Properties and Fatty Acids Profile of Seed Oil of Telfairia occidentalis Hook, F. International Journal of Basic & Applied Sciences, 11, 10-13.
[42]  Mishra, S., Anand, K. and Mehta, P. (2016) Predicting the Cetane Number of Biodiesel Fuels from Their Fatty Acid Methyl Ester Composition. Energy Fuels, 30, 10425-10434.
https://doi.org/10.1021/acs.energyfuels.6b01343

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133