全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Thermal and Mechanical Characterization of Compressed Clay Bricks Reinforced by Rice Husks for Optimizing Building in Sahelian Zone

DOI: 10.4236/ampc.2023.1310013, PP. 177-196

Keywords: Clay Bricks, Rice Huscks, Thermomechanical Charactezisation, Thermal Insulation, Transient Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

This article deals with the characterization of local materials used in insulation building heat. These materials are bricks of earth compressed and stabilized with rice husks. Thermal conductivity, the specific heat and the thermal diffusivity of materials based on clay incorporating rate of 0, 2%, 4%, 6%, 8% and 10% are determined. The results showed that the clay blocks + rice balls had better thermal insulators than simple clay blocks. However, these composite materials used for the envelope of the building must have sufficient mechanical resistance when used in construction. The measurement of mechanical properties such as compressive strength showed an improvement of 6% and beyond, a drop in resistance when increasing rice husks in clay is observed. These results allow to specify the optimal conditions of use of these materials for the building envelope.

References

[1]  Zhang, L., Yang, L., Jelle, B.P., Wang, Y. and Gustavsen, A. (2018) Hygrothermal Properties of Compressed Earthen Bricks. Construction and Building Materials, 162, 576-583.
https://doi.org/10.1016/j.conbuildmat.2017.11.163
[2]  Dime, T., Sore, S.O., Nshimiyimana, P., Messan, A. and Courard, L. (2022) Comparative Study of the Reactivity of Clay Earth Materials for the Production of Compressed Earth Blocks in Ambient Conditions: Effect on Their Physico-Mechanical Performances. Journal of Minerals and Materials Characterization and Engineering, 10, 43-56.
https://doi.org/10.4236/jmmce.2022.101004
[3]  Tettey, U.Y.A., Dodoo, A. and Gustavsson, L. (2017) Energy Use Implications of Different Design Strategies for Multi-Storey Residential Buildings under Future Climates. Energy, 138, 846-860.
https://doi.org/10.1016/j.energy.2017.07.123
[4]  Roshan, G.R., Oji, R. and Attia, S. (2019) Projecting the Impact of Climate Change on Design Recommendations for Residential Buildings in Iran. Building and Environment, 155, 283-297.
https://doi.org/10.1016/j.buildenv.2019.03.053
[5]  Kurmus, H. and Mohajerani, A. (2020) Recycling of Cigarette Butts in Fired Clay Bricks: A New Laboratory Investigation. Materials, 13, Article 790.
https://doi.org/10.3390/ma13030790
[6]  Bessa, A., Bigas, J. and Gallias, J. (2004) Evaluation of the Binding Contribution of Mineral Additions to the Porosity, Compressive Strength and Durability Mortars.
[7]  Moriarty, J.P. and Svare, T.I. (1976) Housing Materials and Methods for Tropical Africa. Batiment International, Building Research and Practice, 4, 28.
https://doi.org/10.1080/09613217608550444
[8]  Babé, C., et al. (2020) Thermomechanical Characterization and Durability of Adobes Reinforced with Millet Waste Fibers (Sorghum bicolor). Case Studies in Construction Materials, 13, e00422.
https://doi.org/10.1016/j.cscm.2020.e00422
[9]  Kossi Imbga, B., Bodian, S., Toure, P.M., Dieye, Y. and Sambou, V. (2022) Study of the Thermochemical and Mechanical Properties of Laterite Bricks Stabilised with Cements. International Journal of Advanced Research, 10, 589-603.
https://doi.org/10.21474/IJAR01/15878
[10]  Munoz, P., Letelier, V., Bustamante, M.A., Marcos-Ortega, J. and Sepúlveda, J.G. (2020) Assessment of Mechanical, Thermal, Mineral and Physical Properties of Fired Clay Brick Made by Mixing Kaolinitic Red Clay and Paper Pulp Residues. Applied Clay Science, 198, Article ID: 105847.
https://doi.org/10.1016/j.clay.2020.105847
[11]  Izard, J., Lelong, J., Materiaux, L.E.S. and Inertie, E.T.L. (2010) Les Materiaux Et L’Inertie Thermique.
[12]  El Boukili, G., Lechheb, M., Ouakarrouch, M., Dekayir, A., Kifani-Sahban, F. and Khaldoun, A. (2021) Mineralogical, Physico-Chemical and Technological Characterization of Clay from Bensmim (Morocco): Suitability for Building Application. Construction and Building Materials, 280, Article ID: 122300.
https://doi.org/10.1016/j.conbuildmat.2021.122300
[13]  El Fgaier, F., Lafhaj, Z., Chapiseau, C. and Antczak, E. (2016) Effect of Sorption Capacity on Thermo-Mechanical Properties of Unfired Clay Bricks. Journal of Building Engineering, 6, 86-92.
https://doi.org/10.1016/j.jobe.2016.02.011
[14]  Moriarty, P. (1979) The Case for Traditional Housing in Tropical Africa. Habitat International, 4, 285-290.
https://doi.org/10.1016/0197-3975(79)90038-9
[15]  Costa, R. (1989) Architecture in Black Africa between Development and Tradition. Solar & Wind Technology, 6, 383-387.
https://doi.org/10.1016/0741-983X(89)90057-X
[16]  Coch, H. (1998) Bioclimatism in Vernacular Architecture. Renewable and Sustainable Energy Reviews, 2, 67-87.
https://doi.org/10.1016/S1364-0321(98)00012-4
[17]  Ma, S., Wu, Y. and Bao, P. (2021) Experimental Study on the Properties of Modern Blue Clay Brick for Kaifeng People’s Conference Hall. Scientific Reports, 11, Article No. 20631.
https://doi.org/10.1038/s41598-021-00191-z
[18]  Liu, J. and Zhang, Z. (2020) Characteristics and Weathering Mechanisms of the Traditional Chinese Blue Brick from the Ancient City of Ping Yao. Royal Society Open Science, 7, Article ID: 200058.
https://doi.org/10.1098/rsos.200058
[19]  Chapagain, Y.P., Sapkota, S., Ghale, D.B., Bohara, N.B., Duwal, N. and Bhattarai, J. (2020) A Case Study on Mineralogy and Physico-Mechanical Properties of Commercial Bricks Produced in Nepal. SN Applied Sciences, 2, Article No. 1856.
https://doi.org/10.1007/s42452-020-03535-y
[20]  Asdrubali, F., D’Alessandro, F. and Schiavoni, S. (2015) A Review of Unconventional Sustainable Building Insulation Materials. Sustainable Materials and Technologies, 4, 1-17.
https://doi.org/10.1016/j.susmat.2015.05.002
[21]  Kagonbé, B.P., Tsozué, D., Nzeukou, A.N. and Ngos III, S. (2021) Mineralogical, Geochemical and Physico-Chemical Characterization of Clay Raw Materials from Three Clay Deposits in Northern Cameroon. Journal of Geoscience and Environment Protection, 9, 86-99.
https://doi.org/10.4236/gep.2021.96005
[22]  Khourchid, A.M., Ajjur, S.B. and Al-Ghamdi, S.G. (2022) Building Cooling Requirements under Climate Change Scenarios: Impact, Mitigation Strategies, and Future Directions. Buildings, 12, Article 1519.
https://doi.org/10.3390/buildings12101519
[23]  Dieye, Y., Sambou, V., Faye, M., Thiam, A., Adj, M. and Azilinon, D. (2017) Thermo-Mechanical Characterization of a Building Material Based on Typha Australis. Journal of Building Engineering, 9, 142-146.
https://doi.org/10.1016/j.jobe.2016.12.007
[24]  Bouchefra, I., EL Bichri, F.Z., Chehouani, H. and Benhamou, B. (2022) Mechanical and Thermophysical Properties of Compressed Earth Brick Rienforced by Raw and Treated Doum Fibers. Construction and Building Materials, 318, Article ID: 126031.
https://doi.org/10.1016/j.conbuildmat.2021.126031
[25]  Nitcheu, M., Meukam, P., Damfeu, J.C. and Njomo, D. (2018) Thermomechanical Characterisation of Compressed Clay Bricks Reinforced by Thatch Fibres for the Optimal Use in Building. Materials Sciences and Applications, 9, 913-935.
https://doi.org/10.4236/msa.2019.912066
[26]  Lahdili, M., El Abbassi, F.E., Sakami, S. and Aamouche, A. (2022) Mechanical and Thermal Behavior of Compressed Earth Bricks Reinforced with Lime and Coal Aggregates. Buildings, 12, Article 1730.
https://doi.org/10.3390/buildings12101730
[27]  Meukam, P., Jannot, Y., Noumowe, A. and Kofane, T.C. (2004) Thermo Physical Characteristics of Economical Building Materials. Construction and Building Materials, 18, 437-443.
https://doi.org/10.1016/j.conbuildmat.2004.03.010
[28]  Giuffrida, G., Caponetto, R. and Nocera, F. (2019) Hygrothermal Properties of Raw Earth Materials: A Literature Review. Sustainability, 11, Article 5342.
https://doi.org/10.3390/su11195342
[29]  Sadouri, R. (2022) Elaboration and Characterization of Earth-Sand Adobe Bricks Reinforced by Alfa Fibers.
https://doi.org/10.21203/rs.3.rs-1902393/v1
[30]  Asheghi, R., Abbaszadeh Shahri, A. and Khorsand Zak, M. (2019) Prediction of Uniaxial Compressive Strength of Different Quarried Rocks Using Metaheuristic Algorithm. Arabian Journal for Science and Engineering, 44, 8645-8659.
https://doi.org/10.1007/s13369-019-04046-8
[31]  Nasiri, H., Homafar, A. and Chelgani, S.C. (2021) Prediction of Uniaxial Compressive Strength and Modulus of Elasticity for Travertine Samples Using an Explainable Artificial Intelligence. Results in Geophysical Sciences, 8, Article ID: 100034.
https://doi.org/10.1016/j.ringps.2021.100034
[32]  Ouedraogo, M., et al. (2019) Physical, Thermal and Mechanical Properties of Adobes Stabilized with Fonio (Digitaria exilis) Straw. Journal of Building Engineering, 23, 250-258.
https://doi.org/10.1016/j.jobe.2019.02.005
[33]  Eric, K.K., et al. (2022) Thermophysical and Mechanical Characterization of Poto-Poto Compressed Blocks for Use as Fill Material. Materials Sciences and Applications, 12, 437-459.
https://doi.org/10.4236/msa.2021.1210029
[34]  Moussa, P., Sambou, V., Faye, M., Thiam, A. and Adj, M. (2018) Mechanical and Hygrothermal Properties of Compressed Stabilized Earth Bricks (CSEB). Journal of Building Engineering, 13, 266-271.
https://doi.org/10.1016/j.jobe.2017.08.012
[35]  Mor Diarra Ndiaye, M., Touré, P.M., Dieye, Y. and Gueye, P.M. (2019) Thermo-Mechanical Characterization of Building Component with Crushed Millet Stalk Fiber. International Journal of Innovation and Applied Studies, 26, 1230-1239.
[36]  Ben Mansour, M., Jelidi, A., Cherif, A.S. and Ben Jabrallah, S. (2016) Optimizing Thermal and Mechanical Performance of Compressed Earth Blocks (CEB). Construction and Building Materials, 104, 44-51.
https://doi.org/10.1016/j.conbuildmat.2015.12.024
[37]  Ouedraogo, M., Bamogo, H., Sanou, I., Mazars, V., Aubert, J.E. and Millogo, Y. (2023) Microstructural, Physical and Mechanical Characteristics of Adobes Reinforced with Sugarcane Bagasse. Buildings, 13, Article 117.
https://doi.org/10.3390/buildings13010117
[38]  Malbila, E., Delvoie, S., Toguyeni, D., Attia, S. and Courard, L. (2020) An Experimental Study on the Use of Fonio Straw and Shea Butter Residue for Improving the Thermophysical and Mechanical Properties of Compressed Earth Blocks. Journal of Minerals and Materials Characterization and Engineering, 8, 107-132.
https://doi.org/10.4236/jmmce.2020.83008
[39]  Gandia, R.M., Corrêa, A.A.R., Gomes, F.C., Marin, D.B. and Santana, L.S. (2019) Physical, Mechanical and Thermal Behavior of Adobe Stabilized with “Synthetic Termite Saliva”. Engenharia Agrícola, 39, 139-149.
https://doi.org/10.1590/1809-4430-eng.agric.v39n2p139-149/2019
[40]  Bertelsen, I.M.G., Belmonte, L.J., Fischer, G. and Ottosen, L.M. (2021) Influence of Synthetic Waste Fibres on Drying Shrinkage Cracking and Mechanical Properties of Adobe Materials. Construction and Building Materials, 286, Article ID: 122738.
https://doi.org/10.1016/j.conbuildmat.2021.122738
[41]  Bal, H., Jannot, Y., Gaye, S. and Demeurie, F. (2013) Measurement and Modelisation of the Thermal Conductivity of a Wet Composite Porous Medium: Laterite Based Bricks with Millet Waste Additive. Construction and Building Materials, 41, 586-593.
https://doi.org/10.1016/j.conbuildmat.2012.12.032
[42]  Damfeu, J.C., Meukam, P. and Jannot, Y. (2016) Modeling and Measuring of the Thermal Properties of Insulating Vegetable Fibers by the Asymmetrical Hot Plate Method and the Radial Flux Method: Kapok, Coconut, Groundnut Shell Fiber and Rattan. Thermochimica Acta, 630, 64-77.
https://doi.org/10.1016/j.tca.2016.02.007
[43]  Antar, M.A. (2010) Thermal Radiation Role in Conjugate Heat Transfer across a Multiple-Cavity Building Block. Energy, 35, 3508-3516.
https://doi.org/10.1016/j.energy.2010.04.055
[44]  Capelas de Oliveira, E. (2019) Integral Transforms. Studies in Systems, Decision and Control, 240, 115-167.
https://doi.org/10.1007/978-3-030-20524-9_4
[45]  Putri, E.R.M. and Surjanto, S.D. (2017) Performance of Gahver-Stehfest Numerical Laplace Inversion Method on Option Pricing Formulas. International Journal of Computing Science and Applied Mathematics, 3, 71-76.
https://doi.org/10.12962/j24775401.v3i2.2215
[46]  Horváth, I., Talyigás, Z. and Telek, M. (2018) An Optimal Inverse Laplace Transform Method without Positive and Negative Overshoot—An Integral Based Interpretation. Electronic Notes in Theoretical Computer Science, 337, 87-104.
https://doi.org/10.1016/j.entcs.2018.03.035
[47]  Kuznetsov, A. and Miles, J. (2022) On the Rate of Convergence of the Gaver-Stehfest Algorithm. IMA Journal of Numerical Analysis, 42, 1645-1664.
https://doi.org/10.1093/imanum/drab015
[48]  Nellis (2009) Numerical Inverse Laplace Transform. E29: Section 3.4.7.
[49]  Jannot, Y. (2011) Metrologie Thermique. Lab. d’Energétique Mécanique Théorique Appliquée, 6-97.
[50]  Mazieres, A., Trachman, M., Cointet, J., Coulmont, B. and Prieur, C. (2014) Deep tags: Toward a Quantitative Analysis of Online Pornography. Porn Studies, 1, 80-95.
https://doi.org/10.1080/23268743.2014.888214
[51]  de Hoog, F.R., Knight, J.H. and Stokes, A.N. (1982) An Improved Method for Numerical Inversion of Laplace Transforms. SIAM Journal on Scientific and Statistical Computing, 3, 357-366.
https://doi.org/10.1137/0903022
[52]  Serrano, S., Barreneche, C. and Cabeza, L.F. (2016) Use of by-Products as Additives in Adobe Bricks: Mechanical Properties Characterisation. Construction and Building Materials, 108, 105-111.
https://doi.org/10.1016/j.conbuildmat.2016.01.044
[53]  Binici, H., Aksogan, O. and Shah, T. (2005) Investigation of Fibre Reinforced Mud Brick as a Building Material. Construction and Building Materials, 19, 313-318.
https://doi.org/10.1016/j.conbuildmat.2004.07.013
[54]  Athiyamaan, V. and Ganesh, G.M. (2017) Statistical and Detailed Analysis on Fiber Reinforced Self-Compacting Concrete Containing Admixtures—A State of Art of Review. IOP Conference Series: Materials Science and Engineering, 263, Article ID: 032037.
https://doi.org/10.1088/1757-899X/263/3/032037
[55]  Ismaiel, M., Chen, Y., Cruz-Noguez, C. and Hagel, M. (2022) Thermal Resistance of Masonry Walls: A Literature Review on Influence Factors, Evaluation, and Improvement. Journal of Building Physics, 45, 528-567.
https://doi.org/10.1177/17442591211009549
[56]  Imbga, B.K., Ouedraogo, E., Bayala, A., Ouedraogo, H., Ouattara, F. and Kieno, F. (2022) Characterization of Thermal and Mechanical Properties of Red Clay Mixed with Rice Straw for Thermal Insulation of Buildings. American Journal of Energy Engineering, 10, 68-74.
[57]  Schopfer, M.P.J., Abe, S., Childs, C. and Walsh, J.J. (2009) The Impact of Porosity and Crack Density on the Elasticity, Strength and Friction of Cohesive Granular Materials: Insights from DEM Modelling. International Journal of Rock Mechanics and Mining Sciences, 46, 250-261.
https://doi.org/10.1016/j.ijrmms.2008.03.009
[58]  Danso, H., Martinson, D.B., Ali, M. and Williams, J.B. (2015) Physical, Mechanical and Durability Properties of Soil Building Blocks Reinforced with Natural Fibres. Construction and Building Materials, 101, 797-809.
https://doi.org/10.1016/j.conbuildmat.2015.10.069
[59]  Tonye Emmanuel, M. and Duval Roger, P.M. (2004) Caracterisation De Materiaux Locaux En.
[60]  Millogo, Y., Morel, J.C., Aubert, J.E. and Ghavami, K. (2014) Experimental Analysis of Pressed Adobe Blocks reinforced with Hibiscus cannabinus fibers. Construction and Building Materials, 52, 71-78.
https://doi.org/10.1016/j.conbuildmat.2013.10.094
[61]  El-Sayed Ali, M. and Zeitoun, O.M. (2012) Discovering and Manufacturing a New Natural Insulating Material Extracted from a Plant Growing up in Saudi Arabia. Journal of Engineered Fibers and Fabrics, 7, 88-94.
https://doi.org/10.1177/155892501200700405
[62]  Djadouf, S., Tahakourt, A., Chelouah, N. and Merabet, D. (2011) étude de l’influence des ajouts (grignon d’olive et foin) sur les caractéristiques physico-mécanique de la brique de terre cuite. Communication Science & Technologie, 9.
[63]  Demir, I. (2008) Effect of Organic Residues Addition on the Technological Properties of Clay Bricks. Waste Management, 28, 622-627.
https://doi.org/10.1016/j.wasman.2007.03.019
[64]  Delot, P. (n.d.) Les adobes.
[65]  Benazzouk, A., Douzane, O., Mezreb, K., Laidoudi, B. and Quéneudec, M. (2008) Thermal Conductivity of Cement Composites Containing Rubber Waste Particles: Experimental Study and Modelling. Construction and Building Materials, 22, 573-579.
https://doi.org/10.1016/j.conbuildmat.2006.11.011
[66]  Lahouioui, M. (2019) Elaboration et évaluation des propriétés physico-thermiques et acoustiques de nouveaux éco-composites à base de bois de palmier.
[67]  Moretti, E., Belloni, E. and Agosti, F. (2016) Innovative Mineral Fiber Insulation Panels for Buildings: Thermal and Acoustic Characterization. Applied Energy, 169, 421-432.
https://doi.org/10.1016/j.apenergy.2016.02.048

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133