All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

硼氢化钠固态还原法制备氢化二氧化钛及其可见光催化性能
Preparation of Hydrogenated Titanium Dioxide by Solid State Reduction of Sodium Borohydride and Its Visible-Light Photocatalytic Performance

DOI: 10.12677/NAT.2023.134009, PP. 85-96

Keywords: 氢化二氧化钛,表面缺陷,光催化性能,制备方法
Hydrogenated Titanium Dioxide
, Surface Defects, Photocatalysis Properties, Preparation Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

以硼氢化钠为还原剂,通过调控反应温度和反应时间,采用固态还原法成功将白色锐钛矿二氧化钛还原为蓝色和黑色氢化二氧化钛,并对所得样品进行性质表征和性能测试。表征结果显示,氢化二氧化钛具有典型的核壳结构(TiO2/TiO2?x),包含锐钛矿晶型内层和无序结构外层;氢化反应在无序层中引入大量缺陷,其中Ti3+和氧空位缺陷在导带下方形成杂质能级,降低氢化二氧化钛材料的禁带宽度,扩宽了光谱吸收范围,增强可见光区的光吸收和利用能力。通过制备条件调控缺陷含量获得最佳光催化性能,光催化降解罗丹明B (RhB)结果显示,300℃和50 min反应条件下制备所得蓝色氢化二氧化钛材料的光催化性能最佳,可见光照射下降解效率相比于白色二氧化钛提高了六倍。
With sodium borohydride as reducing agent, white anatase titanium dioxide was successfully reduced to blue and black hydrogenated titanium dioxide by solid state reduction method by adjusting the reaction temperature and time, and the properties of the obtained samples were characterized and tested. The characterization results show that the hydrogenated titanium dioxide has a typical core-shell structure (TiO2/TiO2?x), including the inner layer of anatase crystal and the outer layer of disordered structure. Hydrogenation reaction introduces a large number of defects in the disordered layer, among which Ti3+ and oxygen vacancy defects form impurity energy levels below the conduction band, reducing the band gap of hydrogenated titanium dioxide materials, widening the spectral absorption range, and enhancing the light absorption and utilization ability in the visible light region. The best photocatalytic performance was obtained by adjusting the defect content through the preparation conditions. The results of photocatalytic degradation of rhodamine B (RhB) showed that the blue hydrogenated titanium dioxide material prepared under 300?C and 50 min reaction conditions had the best photocatalytic performance, and the degradation efficiency under visible light irradiation was six times higher than that of white titanium dioxide.

References

[1]  Jing, L., Qu, Y., Wang, B., et al. (2006) Review of Photoluminescence Performance of Nano-Sized Semiconductor Ma-terials and Its Relationships with Photocatalytic Activity. Solar Energy Materials and Solar Cells, 90, 1773-1787.
https://doi.org/10.1016/j.solmat.2005.11.007
[2]  Ran, J., Zhang, J., Yu, J., et al. (2014) Earth-Abundant Cocata-lysts for Semiconductor-Based Photocatalytic Water Splitting. Chemical Society Reviews, 43, 7787-7812.
https://doi.org/10.1039/C3CS60425J
[3]  Qu, Y. and Duan, X. (2013) Progress, Challenge and Perspective of Heterogeneous Photocatalysts. Chemical Society Reviews, 42, 2568-2580.
https://doi.org/10.1039/C2CS35355E
[4]  Chen, X., Shen, S., Guo, L., et al. (2010) Semiconductor-Based Photo-catalytic Hydrogen Generation. Chemical Reviews, 110, 6503-6570.
https://doi.org/10.1021/cr1001645
[5]  An, H., Zhou, J., Li, J., et al. (2009) Deposition of Pt on the Stable Nanotubular TiO2 and Its Photocatalytic Performance. Catalysis Communications, 11, 175-179.
https://doi.org/10.1016/j.catcom.2009.09.020
[6]  Shafiee, A., Carrier, A.J., Nganou, C., et al. (2023) Mechanistic Insight into the Enhanced Photodegradation by Black Titanium Dioxide Nan-ofiber-Graphene Quantum Dot Composites. Applied Surface Science, 636, Article ID 157836.
https://doi.org/10.1016/j.apsusc.2023.157836
[7]  Yu, X., Kim, B. and Kim, Y.K. (2013) Highly Enhanced Pho-toactivity of Anatase TiO2 Nanocrystals by Controlled Hydrogenation-Induced Surface Defects. ACS Catalysis, 3, 2479-2486.
https://doi.org/10.1021/cs4005776
[8]  Wang, Z., Yang, C., Lin, T., et al. (2013) Visible-Light Photo-catalytic, Solar Thermal and Photoelectrochemical Properties of Aluminium-Reduced Black Titania. Energy & Environ-mental Science, 6, 3007-3014.
https://doi.org/10.1039/c3ee41817k
[9]  Berends, D., Taffa, D.H., Meddeb, H., et al. (2023) Precise Control of Broadband Light Absorption and Density of Ti3+ States in Sputtered Black TiO2 Thin Films. Advanced Photonics Re-search, 4, Article ID 2300163.
https://doi.org/10.1002/adpr.202300163
[10]  Chen, J., Ding, Z., Wang, C., et al. (2016) Black Anatase Titania with Ultrafast Sodium-Storage Performances Stimulated by Oxygen Vacancies. ACS Applied Materials & Interfaces, 8, 9142-9151.
https://doi.org/10.1021/acsami.6b01183
[11]  Naldoni, A., Allieta, M., Santangelo, S., et al. (2012) Effect of Nature and Location of Defects on Bandgap Narrowing in Black TiO2 Nanoparticles. Journal of the American Chemical Society, 134, 7600-7603.
https://doi.org/10.1021/ja3012676
[12]  Li, Y., Feng, Y., Bai, H., et al. (2023) Enhanced Visible-Light Photocata-lytic Performance of Black TiO2/SnO2 Nanoparticles. Journal of Alloys and Compounds, 960, Article ID 170672.
https://doi.org/10.1016/j.jallcom.2023.170672
[13]  Wang, W., Lu, C.H., Ni, Y.R., et al. (2012) Enhanced Visi-ble-Light Photoactivity of {001} Facets Dominated TiO2 Nanosheets with Even Distributed Bulk Oxygen Vacancy and Ti3+. Catalysis Communications, 22, 19-23.
https://doi.org/10.1016/j.catcom.2012.02.011
[14]  Liu, X., Xing, Z., Zhang, H., et al. (2016) Fabrication of 3D Mesoporous Black TiO2/MoS2/TiO2 Nanosheets for Visible‐Light‐Driven Photocatalysis. ChemSusChem, 9, 1118-1124.
https://doi.org/10.1002/cssc.201600170
[15]  Wang, D., Xu, Y., Sun, F., et al. (2016) Enhanced Photocatalytic Ac-tivity of TiO2 under Sunlight by MoS2 Nanodots Modification. Applied Surface Science, 377, 221-227.
https://doi.org/10.1016/j.apsusc.2016.03.146
[16]  Huang, Z.F., Song, J., Pan, L., et al. (2015) Carbon Nitride with Simultaneous Porous Network and O-Doping for Efficient Solar-Energy-Driven Hydrogen Evolution. Nano Energy, 12, 646-656.
https://doi.org/10.1016/j.nanoen.2015.01.043
[17]  Ullattil, S.G. and Periyat, P. (2015) Green Microwave Switching from Oxygen Rich Yellow Anatase to Oxygen Vacancy Rich Black Anatase TiO2 Solar Photocatalyst Using Mn(II) as “Anatase Phase Purifier”. Nanoscale, 7, 19184- 19192.
https://doi.org/10.1039/C5NR05975E
[18]  Tan, H., Zhao, Z., Niu, M., et al. (2014) A Facile and Versatile Method for Preparation of Colored TiO2 with Enhanced Solar-Driven Photocatalytic Activity. Nanoscale, 6, 10216-10223.
https://doi.org/10.1039/C4NR02677B
[19]  Wang, G., Wang, H., Ling, Y., et al. (2011) Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Let-ters, 11, 3026-3033.
https://doi.org/10.1021/nl201766h
[20]  Nair, P.R., Ramirez, C.R.S., Pinilla, M.A.G., et al. (2023) Black Titanium Dioxide Nanocolloids by Laser Irradiation in Liquids for Visible Light Pho-to-Catalytic/Electrochemical Applications. Applied Surface Science, 623, Article ID: 157096.
https://doi.org/10.1016/j.apsusc.2023.157096
[21]  Jiang, X., Zhang, Y., Jiang, J., et al. (2012) Characterization of Oxygen Vacancy Associates within Hydrogenated TiO2: A Positron Annihilation Study. The Journal of Physical Chem-istry C, 116, 22619-22624.
https://doi.org/10.1021/jp307573c
[22]  Lin, T., Yang, C., Wang, Z., et al. (2014) Effective Nonmetal Incorporation in Black Titania with Enhanced Solar Energy Utilization. Energy & Environmental Science, 7, 967-972.
https://doi.org/10.1039/c3ee42708k
[23]  Tunesi, S. and Anderson, M.A. (1987) Photocatalysis of 3,4-DCB in TiO2 Aqueous Suspensions; Effects of Temperature and Light Intensity; CIR-FTIR Interfacial Analysis. Chemosphere, 16, 1447-1456.
https://doi.org/10.1016/0045-6535(87)90084-1
[24]  Soares, E.T., Lansarin, M.A. and Moro, C.C. (2007) A Study of Process Variables for the Photocatalytic Degradation of Rhodamine B. Brazilian Journal of Chemical Engineering, 24, 29-36.
https://doi.org/10.1590/S0104-66322007000100003
[25]  Suo, N., Sun, A., Yu, L., et al. (2020) Preparation and Study of Lattice Structure and Magnetic Properties of Bi3+ Ion- Doped Ni-Mg-Co Ferrites by Sol-Gel Auto-Combustion Method. Journal of Sol-Gel Science and Technology, 95, 360- 374.
https://doi.org/10.1007/s10971-020-05302-2
[26]  Wang, X., Wang, F., Sang, Y., et al. (2017) Full‐Spectrum So-lar-Light-Activated Photocatalysts for Light-Chemical Energy Conversion. Advanced Energy Materials, 7, Article ID: 1700473.
https://doi.org/10.1002/aenm.201700473
[27]  Fan, C., Chen, C., Wang, J., et al. (2015) Black Hydrox-ylated Titanium Dioxide Prepared via Ultrasonication with Enhanced Photocatalytic Activity. Scientific Reports, 5, Article No. 11712.
https://doi.org/10.1038/srep11712

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413