全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高校学生参与学科竞赛指导过程管理方法探索——以全国大学生光电设计竞赛“迷宫寻宝”光电智能小车为例
Exploration of Management Method for Guiding College Students to Participate in the Discipline Competition—Taking the “Maze Treasure Hunting” Optoelectronic Intelligent Car of the Nation College Students Optoelectronic Competition as Example

DOI: 10.12677/AE.2023.13101256, PP. 8093-8099

Keywords: 学科竞赛,过程管理,指导教师,光电竞赛
Discipline Competition
, Process Management, Instructor, Optoelectronics Competition

Full-Text   Cite this paper   Add to My Lib

Abstract:

学科竞赛已经成为高校进行高素质人才培养的重要手段之一,为了探索指导大学生参与学科竞赛过程管理与方案实施的有效办法,本文以切身指导参加的全国大学生光电设计竞赛“迷宫寻宝”光电智能小车为例,从赛题内容分析到竞赛方案规划,再在指导教师的角度介绍了竞赛过程管理,最后针对如何有效提高学生参赛积极性、提升竞赛成绩等方面提出了相关建议。
Discipline competitions have become one of the important means of college students to cultivate high-quality talent. In order to explore the effective methods for guiding the college students to participate in these discipline competitions and achieving the process management, this paper takes the “maze treasure hunting” optoelectronic intelligent car of the nation college students opto-electronic competition as example. Firstly, the analysis of competition content and the plan of implementation path are introduced. Then, the competition process management from the instructor’s perspective is elaborated in detail. The suggestions on how to effectively improve the student’s enthusiasm and their performance are put forward in the end.

References

[1]  宋娟. 学科竞赛与理论课堂的融合教学法[J]. 科技视界, 2021(14): 44-45.
[2]  车浩远, 沈纪苹, 姚林泉, 周文俊, 周小龙. 学科竞赛在人才培养中的作用——以力学竞赛为例[J]. 教育进展, 2022, 12(5): 1748-1755.
[3]  刘秋菊, 罗清海, 邹祝英, 张红艳. 学科竞赛对大学生创新能力促进作用分析[J]. 高教学刊, 2020(19): 34-37.
[4]  刘长宏, 戚向阳, 薛猛, 王刚, 张恒庆. 学科竞赛人才培养新模式的探讨[J]. 实验室科学, 2010, 13(5): 172-174+178.
[5]  何春保, 倪春林, 李庚英, 胡威. 提高大学生学科竞赛实践教学质量的途径[J]. 实验技术与管理, 2020, 37(10): 23-26.
[6]  范毅, 陈芸生, 李仁焕. 课程教学与学科竞赛相互融合的现状和趋势研究[J]. 社会科学前沿, 2020, 9(2): 166-171.
[7]  杨涛, 张森林. 一种基于HSV颜色空间和SIFT特征的车牌提取算法[J]. 计算机应用研究, 2011, 28(10): 3937-3939+3976.
[8]  张福海, 李宁, 袁儒鹏, 付宜利. 基于强化学习的机器人路径规划算法[J]. 华中科技大学学报(自然科学版), 2018, 46(12): 65-70.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133