In this study, the SEBAL (Surface Energy Balance Algorithm for Land) model was used to map the spatio-temporal distribution of actual evapotranspiration in the Yamoussoukro department (Côte d’Ivoire). Like other regions of the country, the Yamoussoukro district is confronted with the phenomenon of evapotranspiration (ET). This is a very important component that comes into play in the water balance but also in the calculation of the water needs of agricultural crops. Consequently, its estimation is of paramount importance in research related to the rational management of water resources, particularly agricultural water. The objective of this study was to analyze the spatio-temporal distribution of actual evapotranspiration (AET) as a function of land cover and land use. The methodology used is based on the SEBAL model which uses remote sensing (Landsat 8_OLI/TIRS) and climatic data to estimate actual evapotranspiration and analyze the spatio-temporal distribution of AET. The results reveal that the AET varied from 0 to 5.44 mm/day over the period from December 2019 to February 2020 with an average value of 4.92 mm/day. The highest average values occurred for water bodies (4.90 mm/day) and flooded vegetation (4.88 mm/day) while the lowest values occurred in residential areas (2.04 mm/day). Furthermore, the results show that the difference between the SEBAL model and the FAO-Penman-Monteith method is minimal with an average RMSE of 0.36 mm/day for all the satellite images. This study demonstrates the considerable potential of remote sensing for the characterization and estimation of spatial evapotranspiration in the Zatta irrigated rice-growing area.
References
[1]
RGPH (2021) Résultats globaux. Institut National de la Satistique (INS), Cote d’Ivoire.
[2]
Cordeil, A., Othman, W. and Touré, M. (2009) Evaluation approfondie de la sécurité alimentaire des ménages ruraux en Cote d’Ivoire. Programme alimentaire mondial des Nations Unies, Cote d’Ivoire, Rapport Final.
[3]
Macauley, H. and Ramadjita, T. (2015) Les cultures céréalières: Riz, mais, millet, sorgho et blé. Document de référence, Dakar.
[4]
Rahimzadegan, M. and Janani, A. (2019) Estimating Evapotranspiration of Pistachio Crop Based on SEBAL Algorithm Using Landsat 8 Satellite Imagery. Agricultural Water Management, 217, 383-390. https://doi.org/10.1016/j.agwat.2019.03.018
[5]
de Lima, C.E.S., de Oliveira Costa, V.S., Galvíncio, J.D., da Silva, R.M. and Santos, C.A.G. (2021) Assessment of Automated Evapotranspiration Estimates Obtained Using the GP-SEBAL Algorithm for Dry Forest Vegetation (Caatinga) and Agricultural Areas in the Brazilian Semiarid Region. Agricultural Water Management, 250, Article ID: 106863. https://doi.org/10.1016/j.agwat.2021.106863
[6]
Santos, C.A.G., da Silva, R.M., Silva, A.M. and Brasil Neto, R.M. (2017) Estimation of Evapotranspiration for Different Land Covers in a Brazilian Semi-Arid Region: A Case Study of the Brígida River Basin, Brazil. Journal of South American Earth Sciences, 74, 54-66. https://doi.org/10.1016/j.jsames.2017.01.002
[7]
Traore, F. (2007) Méthodes d’estimation de l’évapotranspiration réelle à l’échelle du bassin versant du Kou au Burkina Faso. Ph.D. or Master’s Thesis, Université de Liège, Liège.
[8]
Pepin, S. and Bourgeois, G. (2012) Outils agrométéorologiques pour la planification de l’irrigation des cultures. https://www.agrireseau.net/grandescultures/documents/Pepin_Bourgeois.pdf
[9]
Liou, Y.A. and Kar, S. (2014) Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A Review. Energies, 7, 2821-2849. https://doi.org/10.3390/en7052821
[10]
Combres, J.C. (1979) Notes sur l’évapotranspiration. Fruits, 34, 359-362.
[11]
da Silva, B.B., Mercante, E., Boas, M.A.V., Wrublack, S.C. and Oldoni, L.V. (2018) Satellite-Based ET Estimation Using Landsat 8 Images and SEBAL Model. RRevista Ciência Agronomica, 49, 221-227. https://doi.org/10.5935/1806-6690.20180025
[12]
Salifu, T., Agyare, W.A., Kyei-Baffour, N., Mensah, E. and Ofori, E. (2011) Estimating Actual Evapotranspiration Using the SEBAL Model for the Atankwidi and Afram Catchments in Ghana. International Journal of Applied Agricultural Research, 6, 177-193.
[13]
Sun, Z.P., et al. (2011) Evapotranspiration Estimation Based on the SEBAL Model in the Nansi Lake Wetland of China. Mathematical and Computer Modelling, 54, 1086-1092. https://doi.org/10.1016/j.mcm.2010.11.039
[14]
Nouri, H. (2017) Estimation of Evapotranspiration Based on Surface Energy Balance Algorithm for Land (Sebal) Using Landsat 8 and Modis Images. Applied Ecology and Environmental Research, 15, 1971-1982. https://doi.org/10.15666/aeer/1504_19711982
[15]
Ghaderi, A., Dasineh, M., Shokri, M. and Abraham, J. (2020) Estimation of Actual Evapotranspiration Using the Remote Sensing Method and SEBAL Algorithm: A Case Study in Ein Khosh Plain, Iran. Hydrology, 7, Article 36. https://doi.org/10.3390/hydrology7020036
[16]
Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J.C., Mathis, M. and Brumby, S.P. (2021) Global Land Use/Land Cover with Sentinel 2 and Deep Learning. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, 11-16 July 2021, 4704-4707. https://doi.org/10.1109/IGARSS47720.2021.9553499
[17]
Allen, R.G., Pereira, L.S., Raes, D. and Smith, M. (1998) Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56. https://www.researchgate.net/publication/235704197_Crop_evapotranspiration-Guidelines_for_computing_crop_water_requirements-FAO_Irrigation_and_drainage_paper_56
[18]
Kergomard, C. (2000) Pratique des corrections atmosphériques en télédétection: Utilisation du logiciel 5S-PC. Cybergeo: European Journal of Geography http://journals.openedition.org/cybergeo/1679 https://doi.org/10.4000/cybergeo.1679
[19]
Staenz, K., Neville, R.A., Clavette, S., Landry, R., White, H.P. and Hitchcock, R. (2002) Retrieval of Surface Reflectance from Hyperion Radiance Data. IEEE International Geoscience and Remote Sensing Symposium, Toronto, 24-28 June 2002, 1419-1421. https://doi.org/10.4095/219887
[20]
Ghaderi, A., Dasineh, M., Shokri, M. and Abraham, J. (2020) Estimation of Actual Evapotranspiration Using the Remote Sensing Method and SEBAL Algorithm: A Case Study in Ein Khosh Plain, Iran. Hydrology, 7, Article 36. https://doi.org/10.3390/hydrology7020036
[21]
Hamimed, A., Abdelkader, K. and Zaagane, M. (2018) Méthodologie d’estimation de l’évapotranspiration et des flux énergétiques de surface à partir des données satellitaires thermiques et des modèles du bilan énergétique. https://www.researchgate.net/publication/328026994
[22]
Bastiaanssen, W.G.M., Menenti, M., Feddes, R.A. and Holtslag, A.A.M. (1998) A Remote Sensing Surface Energy Balance Algorithm for Land (SEBAL). 1. Formulation. Journal of Hydrology, 212-213, 198-212. https://doi.org/10.1016/S0022-1694(98)00253-4
[23]
Liang, S., et al. (2003) Narrowband to Broadband Conversions of Land Surface Albedo: II. Validation. Remote Sensing of Environment, 84, 25-41. https://doi.org/10.1016/S0034-4257(02)00068-8
[24]
Rouse, W. and Haas, R.H. (1974) Monitoring Vegetation Systems in the Great Plains with Erts. https://ntrs.nasa.gov/citations/19740022614
[25]
Souidi, Z., Hamimed, A., Donze, F., Seddini, A. and Mederbal, K. (2010) Estimation de l’évapotranspiration d’un couvert forestier en Algérie par télédétection. Ph.D. Thesis, Université Montpellier, Montpellier.
[26]
Allen, R.G., Tasumi, M. and Trezza, R. (2007) Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. Journal of Irrigation and Drainage Engineering, 133, 380-394. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380)
[27]
Allen, R., Tasumi, M., Trezza, R., Bastiaanssen, W. and Waters, R. (2002) Surface Energy Balance Algorithms for Land. Advanced Training and User’s Manual-Idaho Implementation.
[28]
Hamimed, A. and Khaldi, A. (2000) Utilisation des données satellitaires TM de Landsat pour le suivi de l’état hydrique d’un couvert végétal dans les conditions semi -arides en Algérie. Teledetection, 2, 29-38.
[29]
Li, S. and Zhao, W. (2010) Satellite-Based Actual Evapotranspiration Estimation in the Middle Reach of the Heihe River Basin Using the SEBAL Method. Hydrological Processes, 24, 3337-3344. https://doi.org/10.1002/hyp.7748
[30]
Kamali, M.I. and Nazari, R. (2018) Determination of Maize Water Requirement Using Remote Sensing Data and SEBAL Algorithm. Agricultural Water Management, 209, 197-205. https://doi.org/10.1016/j.agwat.2018.07.035
[31]
Diarra, A. (2017) Suivi de l’évapotranspiration des cultures irriguées du Sud de la Méditerranée par télédétection multi-capteurs et modélisation globale. Master’s Thesis, Université Pierre et Marie Curie—Université Cadi Ayyad, Paris.
[32]
Bandara, K.M.P.S. (2006) Assessing Irrigation Performance by Using Remote Sensing. Ph.D. Thesis, Wageningen University, Wageningen.
[33]
Cai, X.L. and Sharma, B.R. (2010) Integrating Remote Sensing, Census and Weather Data for an Assessment of Rice Yield, Water Consumption and Water Productivity in the Indo-Gangetic River Basin. Agricultural Water Management, 97, 309-316. https://doi.org/10.1016/j.agwat.2009.09.021
[34]
Compaore, H. (2023) The Impact of Savannah Vegetation on the Spatial and Temporal Variation of Actual Evapotranspiration in the Volta Basin. https://www.academia.edu/7856159/The_impact_of_savannah_vegetation_on_the_spatial_and_temporal_variation_of_actual_evapotranspiration_in_the_Volta_Basin
[35]
Hesadi, H., Behnia, A., AkhoondAli, A.M., Kashefi Pour, S.M., Daneshkar Arasteh, P. and Karimi, A.R. (2022) Estimation of Evapotranspiration of Rangeland Cover Using SEBAL Algorithm in Robat Mahidasht Region Kermanshah Iran. Journal of Rangeland Science, 12, 48-62.
[36]
Ochoa-Sánchez, A., Crespo, P., Carrillo-Rojas, G., Sucozhanay, A. and Célleri, R. (2019) Actual Evapotranspiration in the High Andean Grasslands: A Comparison of Measurement and Estimation Methods. Frontiers in Earth Science, 7, Article 433802. https://doi.org/10.3389/feart.2019.00055
[37]
Lacharme, M. (2001) Données morphologiques et cycle de la plante. https://www.arid-afrique.org/IMG/pdf/plant%20de%20riz.pdf
[38]
de Paiva Lima, E., Sediyama, G.C., Andrade, R.G., Lopes, V.D. and da Silva, B.B. (2014) Evapotranspiracao real diária em sub-bacias do Paracatu, utilizando produtos do sensor Modis. Revista Ceres, 61, 17-27. https://doi.org/10.1590/S0034-737X2014000100003
[39]
Al Zayed, I.S., Elagib, N.A., Ribbe, L. and Heinrich, J. (2016) Satellite-Based Evapotranspiration over Gezira Irrigation Scheme, Sudan: A Comparative Study. Agricultural Water Management, 177, 66-76. https://doi.org/10.1016/j.agwat.2016.06.027