全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evaluation of Candidate Predictors for Seasonal Precipitation Forecasting

DOI: 10.4236/acs.2023.134031, PP. 539-564

Keywords: Principal Component, Maximun Covariance, Predictors, ERA5

Full-Text   Cite this paper   Add to My Lib

Abstract:

This research proposes to carry out a principal component analysis using the maximum covariance method, with the aim of finding the most robust spatio-temporal relationships between several candidate predictors and the accumulated monthly precipitation recorded in Cuba during the period 1980-2020. This process will make it possible to establish quantitative relationships that, together with theoretical considerations, make it possible to reduce the list of predictors to be used for the purpose of obtaining seasonal predictions. The values of the predictors are represented through monthly averages obtained from ERA5 reanalysis, while monthly accumulated precipitation data were obtained from a national-scope grid with 4 km of spatial resolution, used as predictand. The results obtained reflect the highest spatio-temporal correlation values with the first variability mode in all cases, indicating that the usual regime conditions are predominant and have a greater coupling with the precipitation variability in the analyzed temporal scale. In addition, they suggest that the candidates that explain the transport of moisture at low levels, as well as the gradients between the middle and lower troposphere, show the most robust associations. In the same way, the surface temperature of tropical Atlantic Sea, the flow related to Quasi-Biennial Oscillation and the thermodynamic indices, K Index and Galvez-Davison Index, present good degrees of association, for which reason they can be considered the most recommendable for carrying out forecasting experiments.

References

[1]  Vitart, F., Buizza, R., Balmaseda, M.A., Balsamo, G., Bidlot, J.R., Bonet, A., Fuentes, M., Hofstadler, A., Molteni, F. and Palmer, T.N. (2008) The New VarEPS-Monthly Forecasting System: A First Step towards Seamless Prediction. Quarterly Journal of the Royal Meteorological Society, 134, 1789-1799.
https://doi.org/10.1002/qj.322
[2]  Molteni, F., Stockdale, T., Balmaseda, M., Balsamo, G., Buizza, R., Ferranti, L., Magnusson, L., Mogensen, K., Palmer, T. and Vitart, F. (2011) The New ECMWF Seasonal Forecast System (System 4). ECMWF, Reading.
[3]  Johnson, S.J., Stockdale, T.N., Ferranti, L., Balmaseda, M.A., Molteni, F., Magnusson, L., Tietsche, S., Decremer, D., Weisheimer, A., Balsamo, G., Keeley, S.P.E., Mogensen, K., Zuo, H. and Monge-Sanz, B.M. (2019) SEAS5: The New ECMWF Seasonal Forecast System. Geoscientific Model Development, 12, 1087-1117.
https://doi.org/10.5194/gmd-12-1087-2019
[4]  Robertson, A.W., Vitart, F. and Camargo, S.J. (2020) Subseasonal to Seasonal Prediction of Weather to Climate with Application to Tropical Cyclones. Journal of Geophysical Research: Atmospheres, 125, e2018JD029375.
https://doi.org/10.1029/2018JD029375
[5]  World Meteorological Organization (2020) Guidance on Operational Practices for Objective Seasonal Forecasting.
[6]  Barnston, A.G., Thiao, W. and Kumar, V. (1996) Long-Lead Forecasts of Seasonal Precipitation in Africa Using CCA. Weather and Forecasting, 11, 506-520.
https://doi.org/10.1175/1520-0434(1996)011<0506:LLFOSP>2.0.CO;2
[7]  Ashby, S.A., Taylor, M.A. and Chen, A.A. (2005) Statistical Models for Predicting Rainfall in the Caribbean. Theoretical and Applied Climatology, 82, 65-80.
https://doi.org/10.1007/s00704-004-0118-8
[8]  Amador, J.A. (2008) The Intra-Americas Sea Low-Level Jet. Annals of the New York Academy of Sciences, 1146, 153-188.
https://doi.org/10.1196/annals.1446.012
[9]  Muñoz, E., Busalacchi, A.J., Nigam, S. and Ruiz-Barradas, A. (2008) Winter and Summer Structure of the Caribbean Low-Level Jet. Journal of Climate, 21, 1260-1276.
https://doi.org/10.1175/2007JCLI1855.1
[10]  Duran-Quesada, A.M., Gimeno, L., Amador, J.A. and Nieto, R. (2010) Moisture Sources for Central America: Identification of Moisture Sources Using a Lagrangian Analysis Technique. Journal of Geophysical Research, 115, D05103.
https://doi.org/10.1029/2009JD012455
[11]  García-Martínez, I.M. and Bollasina, M.A. (2020) Sub-Monthly Evolution of the Caribbean Low-Level Jet and Its Relationship with Regional Precipitation and Atmospheric Circulation. Climate Dynamics, 54, 4423-4440.
https://doi.org/10.1007/s00382-020-05237-y
[12]  Martínez, C., Goddard, L., Kushnir, Y. and Ting, M.F. (2019) Seasonal Climatology and Dynamical Mechanisms of Rainfall in the Caribbean. Climate Dynamics, 53, 825-846.
https://doi.org/10.1007/s00382-019-04616-4
[13]  Martínez, C. (2021) Seasonal Climatology, Variability, Characteristics, and Prediction of the Caribbean Rainfall Cycle.
https://www.researchgate.net/publication/361266119_Seasonal_Climatology_Variability_Characteristics_and_Prediction_of_the_Caribbean_Rainfall_Cycle
[14]  Wallace, J.M. and Gutzler, D.S. (1981) Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter. Monthly Weather Review, 109, 784-812.
https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2
[15]  Barnston, A.G. and Livezey, R.E. (1987) Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns. Monthly Weather Review, 11, 1083-1126.
https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2
[16]  Thompson, D.W. and Wallace, J.M. (1998) The Arctic Oscillation Signature in the Wintertime Geopotential Height and Temperature Fields. Geophysical Research Letters, 25, 1297-1300.
https://doi.org/10.1029/98GL00950
[17]  Wang, C., Jia, Z., Yin, Z., Liu, F., Lu, G. and Zheng, J. (2021) Improving the Accuracy of Subseasonal Forecasting of China Precipitation with a Machine Learning Approach. Frontiers in Earth Science, 9, Article 659310.
https://doi.org/10.3389/feart.2021.659310
[18]  Planos, E., Rivero, R. and Guevara, V. (2013) Impacto del Cambio Climático y medidas de adaptación en Cuba. Instituto de Meteorología. Agencia de Medio Ambiente, Ministerio de Ciencia Tecnología y Medio Ambiente, La Habana.
[19]  Fonseca, C. (2005) Cambios en la posición e intensidad del anticiclón del Atlántico y modificación en el régimen de las lluvias en Cuba. Revista Cubana de Meteorología, 12, 25-34.
[20]  Pérez, R., Fonseca, C., Lapinel, B., González, C., Planos, E., Cutié, V. and Vega, R. (2009) Actualización del conocimiento sobre variaciones, cambios y tendencias del clima en Cuba (Segunda Comunicación de Cuba a la Convención Marco de Naciones Unidas Sobre Cambio Climático, 62), Informe de Resultado Científico. Instituto de Meteorología.
[21]  Acosta, H. (2014) La Oscilación del Atlántico Norte y el comportamiento de la temporada invernal en la región occidental de Cuba. Tesis de Diploma, La Habana: Instituto Superior de Tecnologías y Ciencias Aplicadas, Universidad de la Habana 140 p.
[22]  Cedeño, Y. (2015) Oscilación ártica y frentes fríos en el occidente de Cuba. Revista Cubana de Meteorología, 21, 91-102.
[23]  Lecha, L. (2018) Biometeorological Forecasts for Health Surveillance and Prevention of Meteor-Tropic Effects. International Journal of Biometeorology, 62, 741-771.
https://doi.org/10.1007/s00484-017-1405-2
[24]  Lecha-Estela, L.B., Sánchez-Suárez, L., Verdecia-Naranjo, Y., Soler-Torres, E. and Sánchez-Díaz, A. (2020) Variabilidad de los tipos de situaciones sinópticas influyentes sobre el occidente de Cuba. Revista Cubana de Meteorología, 26.
http://rcm.insmet.cu/index.php/rcm/article/view/507
[25]  Laing, A. and Evans, J.L. (2016) Introduction to Tropical Meteorology: A Comprehensive Online and Print Textbook. 2nd Edition, University Corporation for Atmospheric Research, Boulder.
https://www.meted.ucar.edu/tropical/textbook_2nd_edition/
[26]  Cárdenas, P.A., Centella, A. and Naranjo, L. (1995) Teleconnection Pacific Caribbean ENSO and QBO as Forcing Climate Variability Elements. Proceeding Sixth Interannual Meeting of Statistical Climatology, Galway.
[27]  Cárdenas, P.A. (1999) Pronósticos mensuales de lluvias en Cuba, un modelo con varios meses de adelanto. Revista Cubana de Meteorología, 6, 47-51.
[28]  Alvarez-Escudero, L., Mayor, Y.G., Borrajero-Montejo, I. and Bezanilla-Morlot, A. (2021) Assesing the Potential of a Long-Term Climate Forecast for Cuba Using the WRF Model. 4th International Electronic Conference on Atmospheric Sciences, 16-31 July 2021, 15 p.
http://www.researchgate.net/publication/353321776_Assesing_the_Potential_of_a_Long-Term_Climate_Forecast_for_Cuba_Using_the_WRF_Model
[29]  Alfaro, E.J., Chourio, X., Muñoz, á.G. and Mason, S.J. (2018) Improved Seasonal Prediction Skill of Rainfall for the Primera Season in Central America. International Journal of Climatology, 38, e255-e268.
https://doi.org/10.1002/joc.5366
[30]  Gálvez, J.M. and Davison, M. (2016) The Gálvez-Davison Index for Tropical Convection.
https://www.wpc.ncep.noaa.gov/international/gdi/GDI_Manuscript_V20161021.pdf
[31]  Solano Ojeda, O., Vázquez Montenegro, R. and Martín Padrón, M.E. (2006) Estudio de la extensión superficial anual de la sequía agrícola en Cuba durante el período 1951-1990. Revista Cubana de Meteorologí, 13, 41-52.
[32]  Bretherton, C.S., Smith, C. and Wallace, J.M. (1992) An Intercomparison of Methods for Finding Coupled Patterns in Climate Data. Cover Journal of Climate, 5, 541-560.
https://doi.org/10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2
[33]  Fernández, M.A., González, C.M. and González, P. (2021) Spectral Changes in Some Meteorological Variables and It’s Relationship with NAO and AO Index. Revista Cubana de Meteorología, 27.
[34]  Peña, L. and Valderá, N. (2022) Variability of the North Atlantic Subtropical High during the Months of November to April from 1950 to 2019. Revista Cubana de Meteorología, 28.
[35]  Muñoz, á.G., Goddard, L., Robertson, A.W., Kushnir, Y. and Baethgen, W. (2015) Cross-Time Scale Interactions and Rainfall Extreme Events in Southeastern South America for the Austral Summer. Part I: Potential Predictors. Journal of Climate, 28, 7894-7913.
https://doi.org/10.1175/JCLI-D-14-00693.1
[36]  Saenz, F., Hidalgo, H.G., Muñoz, á.G., Alfaro, E.J., Amador, J.A. and Vazquez-Aguirre, J.L. (2022) Atmospheric Circulation Types Controlling Rainfall in the Central American Isthmus. International Journal of Climatology, 43, 197-218.
https://doi.org/10.1002/joc.7745
[37]  Manzanas, R., Lucero, A., Weisheimer, A. and Gutiérrez, J.M. (2017) Can Bias Correction and Statistical Downscaling Methods Improve the Skill of Seasonal Precipitation Forecasts? Climate Dynamics, 50, 1161-1176.
https://doi.org/10.1007/s00382-017-3668-z

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133