全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CO2 Air-Water Exchanges during Seasonal and Glacial Cycles

DOI: 10.4236/jacen.2023.124026, PP. 365-385

Keywords: CO2 Budget, Ocean, Photosynthesis, Respiration, Seasonal Cycles, Glacial Cycles, Agriculture Yields, Food Availability

Full-Text   Cite this paper   Add to My Lib

Abstract:

Based on the photosynthesis-respiration reversible reaction and the available statistics, we attempted to quantify the planetary seasonal exchanges of CO2 between air and water from 1970 and compared them to the glacial ACC cycles as reported from ice cores archives. In 2020, the overall continental absorption (AW) was 8.0 giga tonnes of carbon per year (GtC/y). Emissions into the atmosphere (EW) resulting from mineral degradation by respiration and combustion of biomass and fossil hydrocarbons were 14.7 GtC/y, an increase of 2.4% per year since 1970. The continental surplus balance (-AW+EW) of 6.7 GtC/y was shared between the atmosphere, which received 5.1 GtC/y (GATM), and the ocean which absorbed 1.6 GtC/y. This ocean contribution (OC) corresponded to 17% of the 9.2 GtC/y emissions by combustion of fossil hydrocarbons (EFOS). Analysis of the ACC oscillations during 2020 in the northern hemisphere showed that the ocean absorbed 11.1 GtC during the warm season and outgassed 9.5 GtC during the cold season. Assuming proportionality to world population, the ACC, 414 parts per million (ppm) in 2021, would reach 584 ppm in 2080, still growing at a rate of 0.6% per year. The gain of atmospheric CO2 (GATM) and its absorption by the ocean (OC) were expected to peak at 7.0 and 2.2 GtC/y, respectively, in 2080. This increase in the availability of atmospheric CO2 resulted in improved yields of agriculture which more than compensated for the reduction by half of food-producing areas per capita from 1970.

References

[1]  Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davisk, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pepin, L., Ritz, C., Saltzmank, E. and Stievenard, M. (2020) Climate and Atmospheric History of the Past 420,000 Years from the Vostok Ice Core, Antarctica. Nature, 399, 429-436.
https://doi.org/10.1038/20859
[2]  Luthi, D., Le Floch, M., Bereiter, B. et al. (2008) High Resolution Carbon Dioxide Concentration Record 650,000-800,000 Years before Present. Nature, 453, 379-382.
https://doi.org/10.1038/nature06949
[3]  Milankovitch, M. (1920) Théorie Mathématique des Phénomènes Thermiques Produits par la Radiation Solaire. Académie Yougoslave des Sciences et des Arts de Zagreb, Gauthier Villars, Paris, France, 340 p.
[4]  Shindell, D., Rind, D., Balachandran, N., Lean, J. and Lonergan, P. (1999) Solar Cycle Variability, Ozone, and Climate. Science, 284, 305-308.
https://doi.org/10.1126/science.284.5412.305
[5]  Bond, G., Kromer, B., Beer, J., Muscheler, R., et al. (2001) Persistent Solar Influence on North Atlantic Climate during the Holocene. Science, 294, 2130-2136.
https://doi.org/10.1126/science.1065680
[6]  Wanner, H., Solomina, O., Grosjean, M., Ritz, S.P. and Jetel, M. (2011) Structure and Origin of Holocene Cold Events. Quaternary Science Reviews, 30, 3109-3123.
https://doi.org/10.1016/j.quascirev.2011.07.010
[7]  Kobashi, T., Shindell, D.T., Kodera, K., Box, J.E., Nakaegawa, T. and Kawamura, K. (2013) On the Origin of Multidecadal to Centennial Greenland Temperature Anomalies over the Past 800 yr. Climate of the Past, 9, 583-596.
https://doi.org/10.5194/cp-9-583-2013
[8]  Connolly, R., Soon, W., Connolly, M., Baliunas, S., Berglund, J., Butler, C.J., Cionco, R.G., Elias, A.G., Fedorov, V.M., Harde, H., Henry, G.W., Hoyt, D.V., Humlum, O., Legates, D.R., Luning, S., Scafetta, N., Solheim, J.E., Szarka, L., van Loon, H., Velasco Herrera, V.M., Willson, R.C., Yan, H. and Zhang, W. (2021) How Much Has the Sun Influenced Northern Hemisphere Temperature Trends? An Ongoing Debate. Research in Astronomy and Astrophysics, 21, Article 131.
https://doi.org/10.1088/1674-4527/21/6/131
[9]  Caillon, N., Severinghaus, J.P., Jouzel, J., Barnola, J.M., Kang, J. and Lipenkov, V.Y. (2003) Timing of Atmospheric CO2 and Antarctic Temperature Changes across Termination III. Science, 299, 1728-1731.
https://doi.org/10.1126/science.1078758
[10]  Richet, P. (2021) Le climat et la relation temperature CO2: Un réexamen épistémologique du message des carottes glaciaires. Institut de Physique du Globe de Paris, Paris.
[11]  Trenberth, K.E. and Smith, L. (2004) The Mass of the Atmosphere: A Constraint on Global Analyses. Journal of Climate, 18, 864-875.
https://doi.org/10.1175/JCLI-3299.1
[12]  Sorokhtin, O.G., Chilingar, G.V. and Khilyuk, L.F. (2007) Global Warming and Global Cooling Evolution of Climate on Earth. Developments in Earth and Environmental Sciences, 5, xi-xvi, 1-313.
https://doi.org/10.1016/S1571-9197(06)05001-4
[13]  Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S.C., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C. and Rummukainen, M. (2013) Evaluation of Climate Models. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Doschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M., Eds., Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the 5th Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 741-882.
https://doi.org/10.1017/CBO9781107415324.020
[14]  Miskolczi, F.M. (2007) Greenhouse Effect in Semi-Transparent Planetary Atmospheres. Quarterly Journal of the Hungarian Meteorological Service, 111, 1-40.
[15]  Cornet, J.F., Dussap, C.G. and Gros, J.B. (1998) Kinetics and Energetics of Photosynthetic Microorganisms in Photobioreactors: Application to Spirulina Growth. Advances in Biochemical Engineering and Biotechnology, 59, 155-224.
[16]  Pruvost, J., Van Vooren, G., Cogne, G. and Legrand, J. (2009) Investigation of Biomass and Lipids Production with Neochloris oleoabundans in Photobioreactor. Bioresource Technology, 100, 5988-5995.
https://doi.org/10.1016/j.biortech.2009.06.004
[17]  Myneni, R.B., Keeling, C.D., Tucker, C.J., Asrar, G. and Nemani, R.R. (1997) Increased Plant Growth in the Northern High Latitudes from 1981 to 1991. Nature, 386, 698-702.
https://doi.org/10.1038/386698a0
[18]  Buermann, W., Lintner, B.R., Koven, C.D., Angert, A., Pinzon, J.E., Tucker, C.J. and Fung, I.Y. (2006) The Changing Carbon Cycle at Mauna Loa Observatory. Proceedings of the National Academy of Sciences of the United States of America, 104, 4249-4254.
https://doi.org/10.1073/pnas.0611224104
[19]  Jiang, X., Chahine, M.T., Li, Q., Liang, M., Olsen, E.T., Chen, L.L., Wang, J. and Yung, Y.L. (2012) CO2 Semiannual Oscillation in the Middle Troposphere and at the Surface. Global Biogeochemical Cycles, 26, GB3006.
https://doi.org/10.1029/2011GB004118
[20]  Dermoun, D., Chaumont, D., Thebault, J.M. and Dauta, A. (1992) Modelling of Growth of Porphyridium cruentum in Connection with Two Interdependent Factors: Light and Temperature. Bioresource Technology, 42, 113-117.
https://doi.org/10.1016/0960-8524(92)90069-A
[21]  Gu, L., Post, W., Baldocchi, D., Black, T., Suyker, A., Verma, S., Vesala, T. and Wofsy, S. (2009) Characterizing the Seasonal Dynamics of Plant Community Photosynthesis across a Range of Vegetation Types. In: Noormets, A., Ed., Phenology of Ecosystem Processes, Springer, New York, 35-58.
https://doi.org/10.1007/978-1-4419-0026-5_2
[22]  Le Quéré, C., Moriarty, R., Andrew, R.M., Peters, G.P., Ciais, P., Friedlingstein, P., Jones, S.D., Sitch, S., Tans, P., Arneth, A., Boden, T.A., Bopp, L., Bozec, Y., Canadell, J.G., Chini, L.P., Chevallier, F., Cosca, C.E., Harris, I., Hoppema, M., Houghton, R.A., House, J.I., Jain, A.K., Johannessen, T., Kato, E., Keeling, R.F., Kitidis, V., Klein Goldewijk, K., Koven, C., Landa, C.S., Landschützer, P., Lenton, A., Lima, I.D., Marland, G., Mathis, J.T., Metzl, N., Nojiri, Y., Olsen, A., Ono, T., Peng, S., Peters, W., Pfeil, B., Poulter, B., Raupach, M.R., Regnier, P., Rodenbeck, C., Saito, S., Salisbury, J.E., Schuster, U., Schwinger, J., Séférian, R., Segschneider, J., Steinhoff, T., Stocker, B.D., Sutton, A.J., Takahashi, T., Tilbrook, B., van der Werf, G.R., Viovy, N., Wang, Y.P., Wanninkhof, R., Wiltshire, A. and Zeng, N. (2015) Global Carbon Budget 2014. Earth System Science Data, 7, 47-85.
https://doi.org/10.5194/essd-7-47-2015
[23]  Roy-Barnam, M. and Jeandel, C. (2016) CO2 Exchanges between the Ocean and the Atmosphere: Ocean Circulation, Carbon Cycle and Climate Change. In: Roy-Barman. M. and Jeandel, C., Eds., Marine Geochemistry: Ocean Circulation, Carbon Cycle and Climate Change, Oxford University Press, Oxford, 235-264.
https://doi.org/10.1093/acprof:oso/9780198787495.003.0008
[24]  Friedlingstein, P., O’Sullivan, M., Jones, M.W., Andrew, R.M., Hauck, J., Olsen, A., Peters, G.P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Canadell, J.G., Ciais, P., Jackson, R.B., Alin, S., Aragao, L.E.O.C., Arneth, A., Arora, V., Bates, N.R., Becker, M., Benoit-Cattin, A., Bittig, H.C., Bopp, L., Bultan, S., Chandra, N., Chevallier, F., Chini, L.P., Evans, W., Florentie, L., Forster, P.M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V., Houghton, R.A., Ilyina, T., Jain, A.K., Joetzjer, E., Kadono, K., Kato, E., Kitidis, V., Korsbakken, J.I., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland, G., Metzl, N., Munro, D.R., Nabel, J.E.M.S., Nakaoka, S.I., Niwa, Y., O’Brien, K., Ono, T., Palmer, P.I., Pierrot, D., Poulter, B., Resplandy, L., Robertson, E., Rodenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Smith, A.J.P., Sutton, A.J., Tanhua, T., Tans, P.P., Tian, H., Tilbrook, B., van der Werf, G., Vuichard, N., Walker, A.P., Wanninkhof, R., Watson, A.J., Willis, D., Wiltshire, A.J., Yuan, W., Yue, X. and Zaehle, S. (2020) Global Carbon Budget 2020. Earth System Science Data, 12, 3269-3340.
https://doi.org/10.5194/essd-12-3269-2020
[25]  Friedlingstein, P., Jones, M.W., O’Sullivan, M., Andrew, R.M., Bakker, D.C.E., Hauck, J., Le Quéré, C., Peters, G.P., Peters, W., Pongratz, J., Sitch, S., Canadell, J.G., Ciais, P., Jackson, R.B., Alin, S.R., Anthoni, P., Bates, N.R., Becker, M., Bellouin, N., Bopp, L., Chau, T.T.T., Chevallier, F., Chini, L.P., Cronin, M., Currie, K.I., Decharme, B., Djeutchouang, L., Dou, X., Evans, W., Feely, R.A., Feng, L., Gasser, T., Gilfillan, D., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, O., Harris, I., Houghton, R.A., Hurtt, G.C., Iida, Y., Ilyina, T., Luijkx, I.T., Jain, A.K., Jones, S.D., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J.I., Kortzinger, A., Landschützer, P., Lauvset, S.K., Lefèvre, N., Lienert, S., Liu, J., Marland, G., McGuire, P.C., Melton, J.R., Munro, D.R., Nabel, J.E.M.S., Nakaoka, S.I., Niwa, Y., Ono, T., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rodenbeck, C., Rosan, T.M., Schwinger, J., Schwingshackl, C., Séférian, R., Sutton, A.J., Sweeney, C., Tanhua, T., Tans, P.P., Tian, H., Tilbrook, B., Tubiello, F., van der Werf, G., Vuichard, N., Wada, C., Wanninkhof, R., Watson, A., Willis, D., Wiltshire, A.J., Yuan, W., Yue, C., Yue, X., Zaehle, S. and Zeng, J. (2022) Global Carbon Budget 2021. Earth System Science Data, 14, 1917-2005.
https://doi.org/10.5194/essd-14-1917-2022
[26]  Rodenbeck, C., Bakker, D.C.E., Gruber, N., Iida, Y., Jacobson, A.R., Jones, S., Landschützer, P., Metzl, N., Nakaoka, S., Olsen, A., Park, G.H., Peylin, P., Rodgers, K.B., Sasse, T.P., Schuster, U., Shutler, J.D., Valsala, V., Wanninkhof, R. and Zeng, J. (2015) Data-Based Estimates of the Ocean Carbon Sink Variability—First Results of the Surface Ocean pCO2 Mapping Intercomparison (SOCOM). Biogeosciences, 12, 7251-7278.
https://doi.org/10.5194/bg-12-7251-2015
[27]  Welp, L.R., Keeling, R.F., Meijer, H.A.J., Bollenbacher, A.F., Piper, S.C., Yoshimura, K., Francey, R.J., Allison, C.E. and Wahlen, M. (2011) Interannual Variability in the Oxygen Isotopes of Atmospheric CO2 Driven by El Nino. Nature, 477, 579-582.
https://doi.org/10.1038/nature10421
[28]  Campbell, J.E., Berry, J.A., Seibt, U., Smith, S.J., Montzka, S.A., Launois, T., Laine, M., et al. (2017) Large Historical Growth in Global Terrestrial Gross Primary Production. Nature, 544, 84-87.
https://doi.org/10.1038/nature22030
[29]  Haverd, V., Smith, B., Canadell, J.G., et al. (2020) Higher than Expected CO2 Fertilization Inferred from Leaf to Global Observations. Global Change Biology, 26, 2390-2402.
https://doi.org/10.1111/gcb.14950
[30]  Longhurst, A., Sathyendranath, S., Platt, T. and Caverhill, C. (1995) An Estimate of Global Primary Production in the Ocean from Satellite Radiometer Data. Journal of Plankton Research, 17, 1245-1271.
https://doi.org/10.1093/plankt/17.6.1245
[31]  Antoine, D. and Morel, A. (1996) Oceanic Primary Production, 1, Adaptation of a Spectral Lightphotosynthesis Model in View of Application to Satellite Chlorophyll Observations. Global Biogeochemical Cycles, 10, 43-55.
https://doi.org/10.1029/95GB02831
[32]  Behrenfeld, M.J. and Falkowski, P.G. (1997) Photosynthetic Rates Derived from Satellite-based Chlorophyll Concentration. Limnology and Oceanography, 42, 1-20.
https://doi.org/10.4319/lo.1997.42.1.0001
[33]  Moore, J.K., Doney, S.C., Glover, D.M. and Fung, I.Y. (2001) Iron Cycling and Nutrient-Limitation Patterns in Surface Waters of the World Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 49, 463-507.
https://doi.org/10.1016/S0967-0645(01)00109-6
[34]  Behrenfeld, M.J., Boss, E., Siegel, D.A. and Shea, D.M. (2005) Carbon-Based Ocean Productivity and Phytoplankton Physiology from Space. Global Biogeochemical Cycles, 19, GB1006.
https://doi.org/10.1029/2004GB002299
[35]  Carr, M.E., et al. (2006) A Comparison of Global Estimates of Marine Primary Production from Ocean Color. Deep Sea Research Part II: Topical Studies in Oceanography, 53, 741-770.
https://doi.org/10.1016/j.dsr2.2006.01.028
[36]  Westberry, T., Behrenfeld, M., Siegel, D. and Boss, E. (2008) Carbon-Based Primary Productivity Modeling with Vertically Resolved Photoacclimation. Global Biogeochemical Cycles, 22, GB2024.
https://doi.org/10.1029/2007GB003078
[37]  Ogilvie Thornton, D.C. (2012) Primary Production in the Ocean. In: Advances in Photosynthesis - Fundamental Aspects, InTechOpen Ltd., London, 563-588.
https://doi.org/10.5772/27848
[38]  Johnson, K.S. and Bif, M.B. (2021) Constraint on Net Primary Productivity of the Global Ocean by Argo Oxygen Measurements. Nature Geoscience, 14, 769-774.
https://doi.org/10.1038/s41561-021-00807-z
[39]  Falkowski, P.G. and Raven, J.A. (2007) Aquatic Photosynthesis. 2nd Edition, Princeton University Press, Princeton.
https://doi.org/10.1515/9781400849727
[40]  Falkowski, P., Barber, R. and Smetacek, V. (1998) Biogeochemical Controls and Feedbacks on Ocean Primary Production. Science, 281, 200-206.
https://doi.org/10.1126/science.281.5374.200
[41]  Levy, M., Bopp, L., Karleskind, P., Resplandy, L., Ethe, C. and Pinsard, F. (2013) Physical Pathways for Carbon Transfers between the Surface Mixed Layer and the Ocean Interior. Global Biogeochemical Cycles, 27, 1001-1012.
https://doi.org/10.1002/gbc.20092
[42]  Bopp, L., Bowler, C., Guidi, L., Karsenti, E. and de Vargas, C. (2019) The Ocean: A Carbon Pump. Plateforme Océan & Climat-Fiches scientifiques.
https://www.ocean-climate.org/wp-content/uploads/2017/03/ocean-carbon-pump_07-2.pdf
[43]  Rothman, D. (2002) Atmospheric Carbon Dioxide Levels for the Last 500 Million Years. Proceedings of the National Academy of Sciences of the United States of America, 99, 4167-4171.
https://doi.org/10.1073/pnas.022055499
[44]  Moss, D.N. (1962) The Limiting Carbon Dioxide Concentration for Photosynthesis. Nature, 193, 587.
https://doi.org/10.1038/193587a0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133