|
一种含砷废水的处理技术研究
|
Abstract:
本文对某半导体企业生产过程中产生的高浓度含砷废水进行安全处理技术研究,通过氧化法对含砷废水进行氧化预处理,处理后通过化学沉淀法加入沉淀剂(钙盐、铁盐)沉淀除砷,并系统研究了氧化剂用量、铁盐用量、反应时间、反应温度、搅拌速率对砷去除效率的影响。研究结果表明:当n(H2O2)/n(As)比为1.2/1.0、反应溶液pH为9.0、n(Fe)/n(As)比为1.3/1.0、反应温度为60℃、反应时间为2 h时,处置后的废水砷含量为0.1 mg/L,砷的去除率在99.9%以上。处置后的废水满足《污水综合排放标准》GB 8978-1996中排放指标的要求。
In this paper, the safety treatment technology of high-concentration arsenic-containing wastewater produced in the production process of a semiconductor enterprise was studied, and the wastewater was oxidized and pretreated by the oxidation method. After treatment, the arsenic removal was removed by adding precipitating agents (calcium salt and iron salt) by chemical precipitation method, and the effects of the dosage of oxidizer, dosage of iron salt, reaction time, reaction temperature and stirring rate on the removal efficiency of arsenic were systematically studied. The results show that when the ratio of n(H2O2)/n(As) was 1.2/1.0, the pH of the reaction solution was 9.0, the ratio of n(Fe)/n(As) was 1.3/1.0, the reaction temperature was 60?C, and the reaction time was 2 h, the total arsenic concentration in wastewater can be reduced by 0.1 mg/L, and the removal rate of total arsenic in wastewater reaches more than 99.9%. The treated wastewater meets the requirements of discharge index in GB 8978-1996 of the “Comprehensive Sewage Discharge Standard”.
[1] | 邓卫华. 锑冶炼砷碱渣有价资源综合回收研究[D]: [硕士学位论文]. 长沙: 中南大学, 2014. |
[2] | 崔剑. 预氧化-铁盐法处理含砷废水试验研究[J]. 绿色科技, 2020(18): 107-109. |
[3] | 徐蕾, 郑雅杰, 龙华. 采用复合盐沉淀法从含砷废水中回收三氧化二砷及复合盐的循环利用[J]. 中国有色金属学报, 2020, 30(7): 1667-1676. |
[4] | 岳馥莲. 含砷生物冶金废水砷铁共沉淀法脱砷的研究[D]: [硕士学位论文]. 北京: 中国科学院大学, 2020. |
[5] | Zhang, X., Tian, J., Hu, Y., et al. (2020) Selective Sulfide Precipita-tion of Copper Ions from Arsenic Wastewater Using Monotonic Pyrotechnic. Science of the Total Environment, 705, Article ID: 135816.
https://doi.org/10.1016/j.scitotenv.2019.135816 |
[6] | 王雷, 张俊峰. 低浓度含砷废水处理工艺探讨及生产实践[J]. 中外能源, 2021, 26(1): 92-97. |
[7] | Salameh, Y., Albadarin, A.B., Allen, S., et al. (2015) Arsenic(III, V) Adsorption onto Charred Dolomite: Charring Optimization and Batch Studies. Chemical Engineering Journal, 259, 663-671. https://doi.org/10.1016/j.cej.2014.08.038 |
[8] | 袁露成, 龚傲, 吴选高, 等. 过渡金属氧化物去除水中砷的研究进展[J]. 湿法冶金, 2020, 39(3): 175-181. |
[9] | Salameh, Y., Ahmad, M., Allen, S., et al. (2010) Kinetic and Thermodynamic Investigations on Arsenic Adsorption onto Dolomitic Sorbents. Chemical Engineering Journal, 160, 440-446. https://doi.org/10.1016/j.cej.2010.03.039 |
[10] | 张俊峰, 王雷. 从高砷锑烟灰碱浸液中脱除砷[J]. 湿法冶金, 2021, 40(4): 338-341. |
[11] | Wei, J., Chen, X., Niu, Y., et al. (2012) Spherical Polystyrene-Supported Nano-Fe3O4 of High Capacity and Low-Field Separation for Arsenate Removal from Water. Journal of Hazardous Materials, 243, 319-325.
https://doi.org/10.1016/j.jhazmat.2012.10.036 |
[12] | 郭莉, 崔洁, 陈东, 等. 低浓度含砷污酸处理工艺的比较研究[J]. 环境工程学报, 2013, 7(3): 1005-1009. |
[13] | 张明琴, 周新涛, 罗中秋, 等. 石灰-铁盐法处理工业含砷废水研究进展[J]. 硅酸盐通报, 2016, 35(8): 2447-2453. |
[14] | Ferguson, M.A., Hoffman, M.R. and Hering, J.G. (2005) TiO2-PotoCatalyzed As(III) Oxidation in Aqueous Suspensions: Reaction Kinetics and Effects of Adsorption. Environmental Science & Technology, 39, 1880-1886.
https://doi.org/10.1021/es048795n |
[15] | Li, Y., Qi, X., Li, G., et al. (2020) Efficient Removal of Arsenic from Copper Smelting Wastewater via a Synergy of Steel-Making Slag and KMnO4. Journal of Cleaner Production, 287, Article ID: 125578.
https://doi.org/10.1016/j.jclepro.2020.125578 |
[16] | 赖兰萍, 陈后兴, 陈冬英. 氧化-铁盐混凝沉淀法处理钨冶炼含砷废水的试验研究[J]. 中国钨业, 2018, 33(1): 66-70. |