全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于BP神经网络方法的量化投资——以券商为例
Quantitative Investment Based on BP Neural Network Method—Taking Securities Companies as an Example

DOI: 10.12677/SA.2023.125136, PP. 1324-1335

Keywords: BP神经网络,量化投资,证券行业,R语言
BP Neural Network
, Quantitative Investment, Securities Industry, R Language

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文先是对BP神经网络以及量化投资的历史进了简的解,再是对BP神经网络以及量化投资的原理做了基本的说明,并且对我国证券行业从几个宏观的角度做了分析。最后以R语言中的neuralnet函数建立了我国证券行业的研究模型。基于BP神经网络预测的可靠性,以我国证券板块为研究对象,从我国整个证券行业中选取年度财务数据,以其中554组数据作为BP神经网络的训练集,再结合中信证券2005年至2020年的16组真实的数据,使经过训练的BP神经网络模型对其进行预测,并且通过预测的数据与实际的数据对比,最终得到了较为可靠的模型,并根据此模型成功选取了10支股票,并以此提出了一些投资建议。
Firstly, this paper briefly explains the history of BP neural network and quantitative investment, then makes a basic explanation of the principle of BP neural network and quantitative investment, and analyzes China’s securities industry from several macro perspectives. Finally, the research model of China’s securities industry is established by using the neuralnet function in R language. Based on the reliability of BP neural network prediction, taking China’s securities sector as the research object, this paper selects the annual financial data from the whole securities industry in China, takes 554 groups of data as the training set of BP neural network, combined with 16 groups of real data of CITIC Securities from 2005 to 2020, makes the trained BP neural network model predict it, and compares the predicted data with the actual data. Finally, a more reliable model is obtained, 10 stocks are successfully selected according to this model, and some investment suggestions are put forward.

References

[1]  McCulloch, W.S. and Pitts, W. (1943) A Logical Calculus of the Ideas Immanent in Nervous Activity. The Bulletin of Mathematical Biophysics, 5, 115-133.
https://doi.org/10.1007/BF02478259
[2]  White, H. (1988) Economic Prediction Using Neural Network: The Case of IBM Daily Stock Returns. IEEE 1988 International Conference on Neural Networks, San Diego, CA, USA, 24-27 July 1988.
https://doi.org/10.1109/ICNN.1988.23959
[3]  Gen?ay, R. (1996) Non-Linear Prediction of Security Returns with Moving Average Rules. Journal of Forecasting, 15, 165-174.
https://doi.org/10.1002/(SICI)1099-131X(199604)15:3<165::AID-FOR617>3.0.CO;2-V
[4]  Shapiro, A.F. (2002) The Merging of Neural Networks, Fuzzy Logic, and Genetic Algorithms. Insurance: Mathematics and Economics, 31, 115-131.
https://doi.org/10.1016/S0167-6687(02)00124-5
[5]  Kim, K.J. (2003) Financial Time Series Forecasting Using Support Vector Machines. Neurocomputing, 55, 307-319.
https://doi.org/10.1016/S0925-2312(03)00372-2
[6]  Zhang, G.P. (2003) Time Series Forecasting Using a Hybrid ARIMA and Neural Network Mode. Neurocomputing, 50, 159-175.
https://doi.org/10.1016/S0925-2312(01)00702-0
[7]  Ticknor, J.L. (2013) A Bayesian Regularized Artificial Neural Network for Stock Market forecasting. Expert Systems with Applications, 40, 501-5506.
https://doi.org/10.1016/j.eswa.2013.04.013
[8]  邢娟. 基于数据挖掘的量化投资系统的研究[D]: [硕士学位论文]. 济南: 齐鲁工业大学, 2017.
[9]  李子睿. 量化投资交易策略研究[D]: [硕士学位论文]. 天津: 天津大学, 2013.
[10]  刘白兰, 朱臻. 双向交易背景下的指数基金量化投资研究[J]. 海南金融, 2012(5): 4-7.
[11]  蒋树国. 量化投资趋势策略分析和研究——基于葛兰碧法则[D]: [硕士学位论文]. 北京: 对外经济贸易大学, 2016.
[12]  李响. 基于BP神经网络的股价预测[J]. 大连海事大学学报, 2008, 34(S1): 114-116.
[13]  赵晨. 动态神经网络在量化投资预测中的应用[D]: [硕士学位论文]. 上海: 复旦大学, 2014.
[14]  周德红, 冯豪, 程乐棋, 李文. 遗传算法优化的BP神经网络在地震死亡人数评估中的应用[J]. 安与环境学报, 2017, 17(6): 2267-2272.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133