全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

珠江三角洲低碳效率区域差异性研究
Study on Regional Heterogeneity of Low Carbon Efficiency in the Pearl River Delta Region

DOI: 10.12677/ASS.2023.1210812, PP. 5918-5926

Keywords: 碳中和,SBM模型,珠江三角洲,低碳效率,GIS
Carbon Neutrality
, Slacks-Based Measure, Pearl River Delta, Low Carbon Efficiency, GIS

Full-Text   Cite this paper   Add to My Lib

Abstract:

在双碳背景下,区域低碳效率值与效率值空间分布差异是制定减排措施的重要基础,珠三角作为广东省乃至全国经济发展的重要引擎,需在实现碳中和方面做出先行示范。本文以非期望产出的超效率 SBM 模型为基础,在指标构建体系中纳入科学技术创新指标,测算珠三角九市2010年至2019年的低碳效率值,同时结合GIS探析珠三角低碳效率的空间分布差异,提出实施差异化低碳转型策略、深化国家森林城市群建设等建议。
Against the background of dual-carbon, the regional low-carbon efficiency value and the differ-ence in the spatial distribution of the efficiency value are important bases for the formulation of emission reduction measures. The Pearl River Delta, as an important engine of economic devel-opment in Guangdong Province and even the whole country, needs to make a pioneering demon-stration of the realization of carbon neutrality. This paper based on the super-efficiency SBM model with non-expected output. Incorporates science and technology into the indicator construction system to measure the value of low-carbon benefits of the nine cities in the Pearl River Delta (PRD) from 2010 to 2019. At the same time explores the spatial distribution differences in the low-carbon efficiency of the PRD in conjunction with GIS. Finally, it puts forward suggestions such as implementing differentiated low-carbon transformation strategies and deepening the construction of national forest city clusters.

References

[1]  Zhou, C.S., Shi, C.Y., Wang, S.J., et al. (2018) Estimation of Eco-Efficiency and Its Influencing Factors in Guangdong Province Based on Super-SBM and Panel Regression Models. Ecological Indicators, 86, 67-80.
https://doi.org/10.1016/j.ecolind.2017.12.011
[2]  王一帆, 袁大昌. 中国城市碳效率时空演变格局及优化研究[J]. 生态经济, 2022, 38(3): 93-100.
[3]  刘伟晗, 李伟, 卢灿. 基于三阶段SBM-DEA的碳排放效率分解研究[J]. 电力科学与工程, 2023, 39(7): 24-33.
[4]  周平. 基于超效率DEA模型的区域低碳效率空间分异——以湖南省各市州为例[J]. 经济地理, 2017, 37(3): 188-192.
[5]  彭文斌, 曹笑天, 苏昌贵, 等. 长江中游城市群碳效率时空演化特征——基于三阶段SBM-DEA模型[J]. 生态学报, 2023, 43(9): 3532-3545.
[6]  高赢, 冯宗宪. “一带一路”沿线国家低碳发展效率测评及影响因素探究[J]. 科技进步与对策, 2018, 35(21): 39-47.
[7]  曾勇, 张淑英, 李德山. 中国全要素天然气利用效率区域差异性[J]. 天然气工业, 2018, 38(12): 140-145.
[8]  张滨沙. 中国工业行业产能过剩的形成机理、测度及影响因素研究[D]: [硕士学位论文]. 长沙: 湖南大学, 2018.
[9]  Andersen, P. and Petersen, N.C. (1993) A Procedure for Ranking Units in Data Envelopment Analysis. Management Science, 39, 1261-1264.
https://doi.org/10.1287/mnsc.39.10.1261
[10]  盛昭瀚, 朱乔, 吴广谋. DEA理论、方法与应用[M]. 北京: 科学出版社, 1996.
[11]  Zhang, J.R., Zeng, W.H., Wang, J.N., et al. (2015) Regional Low-Carbon Economy Efficiency in China: Analysis Based on the Super-SBM Model with CO2 Emissions. Journal of Cleaner Production, 163, 202-211.
https://doi.org/10.1016/j.jclepro.2015.06.111
[12]  何沙, 李乔楚. 基于Super-SBM模型的区域低碳效率评估与空间分异——以四川省为例[J]. 生态经济, 2021, 37(10): 40-45+128.
[13]  郗永勤, 吉星. 我国工业行业碳排放效率实证研究——考虑非期望产出SBM超效率模型与DEA视窗方法的应用[J]. 科技管理研究, 2019, 39(17): 53-62.
[14]  国家统计局. 中国能源统计年鉴[M]. 北京: 国家统计局出版社, 2020.
[15]  广东省统计局. 广东统计年鉴[M]. 北京: 中国统计出版社, 2020.
[16]  单豪杰. 中国资本存量K的再估算: 1952-2006年[J]. 数量经济技术经济研究, 2008, 25(10): 17-31.
[17]  张健华, 王鹏. 中国全要素生产率: 基于分省份资本折旧率的再估计[J]. 管理世界, 2012(10): 18-30.
[18]  丛建辉, 刘学敏, 赵雪如. 城市碳排放核算的边界界定及其测度方法[J]. 中国人口?资源与环境, 2014, 24(4): 19-26.
[19]  Peng, X. and Tao, X.M. (2018) Decomposition of Carbon Intensity in Electricity Production: Technological Innovation and Structural Adjustment in China's Power Sector. Journal of Cleaner Production, 172, 805-818.
https://doi.org/10.1016/j.jclepro.2017.10.236
[20]  广东省统计局. 广东统计年鉴[M]. 北京: 中国统计出版社, 2021.
[21]  广东省环境保护厅. 2011年广东省环境统计公报[R]. 2012.
[22]  广东省人民政府. 关于加快建立健全绿色低碳循环发展经济体系的实施意见[EB/OL]. http://drc.gd.gov.cn/qtwj/content/post_3721810.html, 2021-12-17.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133