Geochemical Mobility Associated to Gold and Base Metal Occurrences of Mangodara Sector, in Southern Burkina Faso, Banfora Greenstone Belts (West African Craton)
In the Mangodara area within the Banfora greenstone belts (Baoulé-Mossi
domain of the West African Craton), our study focused on geochemical assessment
of the mobility of major and trace elements. Gold and base metal occurrences are
hosted in highly metamorphic felsic (metarhyolite) and intermediate (metadacite
and metaandesite) formations. Common mineral assemblages made up of staurolite
- kyanite - pyrophyllite are interpreted to represent the metamorphosed
equivalent of aluminous hydrothermal alteration. Associated felsic and
intermediate volcanic rocks are enriched in Fe2O3, K2O
(metaandesite, metarhyolite) and depleted in MgO, Al2O3,
CaO, P2O5, Na2O (metarhyolite) and Fe2O3,
MgO, CaO (metaandesite). Al2O3 depletion in mineralized
kyanite-staurotide bearing metarhyolites suggests corroded minerals.
Mineralized metarhyolites show enrichment in Au, Ag, Ba, Bi, Cr, Cu, Eu, La,
Mo, Ni, Pb, S, Sc, V and depletion in As Sb Co, Sn, Zn while mineralized
metaandesites show enrichment in Au, Ag, As, Mo, S, Sb and depletion in Co, Sn,
Zn, Bi, Cr, Cu, Eu, Ni, Pb, Sc. Ba, La, V are immobile in metaandesites.
Finally, Ag, As, Sn appear as geochemical vectors for gold exploration in the
study area since gold mineralization is characterized by Au + Ba + Cu + Eu + La
+ Mo + Ni + S association in metarhyolites and Au + S + Sb + As + Ag + Bi in
metaandesites.
References
[1]
Wang, C., Carranza, E.J.M., Zhang, S., Zhang, J., Liu, X., Zhang, D., Sun, X. and Duan, C. (2013) Characterization of Primary Geochemical Haloes for Gold Exploration at the Huanxiangwa Gold Deposit, China. Journal of Geochemical Exploration, 124, 40-58. https://doi.org/10.1016/j.gexplo.2012.07.011
[2]
Genna, D., Gaboury, D. and Roy, G. (2014) Evolution of a Volcanogenic Hydrothermal System Recorded by the Behavior of LREE and Eu: Case Study of the Key Tuffite at Bracemac-McLeod Deposits, Matagami, Canada. Ore Geology Reviews, 63, 160-177. https://doi.org/10.1016/j.oregeorev.2014.04.019
[3]
Manya, S. (2016) Petrogenesis and Emplacement of the TTG and K-Rich Granites at the Buzwagi Gold Mine, Northern Tanzania: Implications for the Timing of Gold Mineralization. Lithos, 256-257, 26-40. https://doi.org/10.1016/j.lithos.2016.03.025
[4]
Manya, S. (2017) Characterization of Geochemical Alteration Halo Associated with Gold Mineralization at the Buzwagi Mine, Northern Tanzania. Journal of African Earth Sciences, 129, 136-145. https://doi.org/10.1016/j.jafrearsci.2017.01.006
[5]
Sillitoe, R.H., Magaranov, G., Mladenov, V., Robert, A. and Creaser, R.A. (2020) Rosen, Bulgaria: A Newly Recognized Iron Oxide-Copper-Gold District. Economic Geology, 115, 481-488. https://doi.org/10.5382/econgeo.4731
[6]
Vasilopoulos, M., Molnár, F., O’Brien, H., Lahaye, Y., Lefèbvre, M., Richard, A., André-Mayer, A.S., Ranta, J.P. and Talikka, M. (2021) Geochemical Signatures of Mineralizing Events in the Juomasuo Au-Co Deposit, Kuusamo Belt, Northeastern Finland. Mineralium Deposita, 56, 1195-1222.
https://doi.org/10.1007/s00126-020-01039-8
[7]
Migdisov, A.A., Williams-Jones, A.E. and Wagner, T. (2009) An Experimental Study of the Solubility and Speciation of the Rare Earth Elements (III) in Fluoride- and Chloride-Bearing Aqueous Solutions at Temperatures up to 300°C. Geochimica et Cosmochimica Acta, 73, 7087-7109. https://doi.org/10.1016/j.gca.2009.08.023
[8]
Pokrovski, G.S., Maria, A., Kokh, M.A., Damien Guillaume, D., Dubessy, J., et al. (2015) Sulfur Radical Species form Gold Deposits on Earth. Proceedings of the National Academy of Sciences of the United States of America, 112, 13484-13489.
https://doi.org/10.1073/pnas.1506378112
[9]
Rollinson, H.R. and Pease, V. (2021) Using Geochemical Data: To Understand Geological Processes. 2nd Edition, Cambridge University Press, Cambridge.
https://doi.org/10.1017/9781108777834
[10]
Guiraud, J. (2021) Les amas sulfurés volcanogènes à or, un nouveau potentiel de gisement dans le bouclier Guyanais: Exemple du gisement montagne d’or. Master’s Thesis, Université du Québec à Montréal, Montréal.
[11]
Cann, J.R. (1970) Rb, Sr, Y, Zr et Nb dans certaines roches basaltiques du fond océanique. Terre Planétaire Lettres scientifiques, 10, 7-11.
https://doi.org/10.1016/0012-821X(70)90058-0
[12]
Polat, A. and Hofmann, A.W. (2003) Altération et schémas géochimiques dans l’Isua 3, 7-3, 8 Ga ceinture de roches vertes, ouest du Groenland. Precambrian Research, 126, 197-218. https://doi.org/10.1016/S0301-9268(03)00095-0
[13]
Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust, Its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific Publications, Oxford.
[14]
Napon, S. (1988) Le gisement d’amas sulfurés (Zn-Ag) de Perkoa dans la province du Sangyé (Burkina Faso—Afrique de l’Ouest): Cartographie, étude pétrographique, géochimique et métallogénique. Master’s Thesis, University de Franche-Comté, Besancon.
[15]
Kríbek, B., Zachariás, J., Knésl, I., Míková, J., Mihaljevic, M., Veselovsky, F. and Bamba, O. (2016) Geochemistry, Mineralogy, and Isotope Composition of Pb, Zn, and Cu in Primary Ores, Gossan and Barren Ferruginous Crust from the Perkoa Base Metal Deposit, Burkina Faso. Journal of Geochemical Exploration, 168, 49-64.
https://doi.org/10.1016/j.gexplo.2016.05.007
[16]
Markwitz, V., Hein, K.A.A. and Miller, J. (2016) Compilation of West African Mineral Deposits: Spatial Distribution and Mineral Endowment. Precambrian Research, 274, 61-81. https://doi.org/10.1016/j.precamres.2015.05.028
[17]
Ilboudo, H., Lompo, M., Wenmenga, U, Napon, S., Naba, S. and N’gom, P.M. (2017) Evidence of a Volcanogenic Massive Sulfide (Zn-PbCu-Ag) District within the Tiébélé Birimian (Paleoproterozoic) Greenstone Belts, Southern Burkina Faso (West-Africa). Journal of African Earth, 129, 792-813.
https://doi.org/10.1016/j.jafrearsci.2017.01.020
[18]
Augustin, J. and Gaboury, D. (2017) Paleoproterozoic Plume-Related Basaltic Rocks in the Mana Gold District in Western Burkina Faso, West Africa: Implications for Exploration and the Source of Gold in Orogenic Deposits. Journal of African Earth Sciences, 129, 17-30. https://doi.org/10.1016/j.jafrearsci.2016.12.007
[19]
Goldfarb, R.J., André-Mayer, A.S., Jowitt, S.M. and Mudd, G.M. (2017) West Africa: The World’s Premier Paleoproterozoic Gold Province. Economic Geology, 112, 123-143. https://doi.org/10.2113/econgeo.112.1.123
[20]
Gauriau, J., Harlaux, M., André-Mayer, A.S., Eglinger, A., Richard, A., Fontaine, A., Lefebvre, M.G., Béziat, D., Villeneuve, J. and Lemarchand, D. (2020) Chemical and Boron Isotope Composition of Tourmaline from the Kiaka Orogenic Gold Deposit (Burkina Faso, West African Craton) as a Proxy for Ore-Forming Processes. Mineralium Deposita, 57, 581-600. https://doi.org/10.1007/s00126-020-01002-7
[21]
Masurel, Q., Eglinger, A., Thébaud, N., Allibone, A., André-Mayer, A.S., McFarlane, H., Miller, J., Jessell, M., Aillères, L., Vanderhaeghe, O., Salvi, S., Baratoux, L., Perrouty, S., Begg, G., Fougerouse, D., Hayman, P., Wane, O., Tshibubudze, A., Parra-Avila, L., Kouamélan, A. and Amponsah, P.O. (2021) Paleoproterozoic Gold Events in the Southern West African Craton: Review and Synopsis. Mineralium Deposita, 57, 513-537. https://doi.org/10.1007/s00126-021-01052-5
[22]
Thébaud, N., Eglinger, A., André-Mayer, A.S. and Kolb, J. (2022) Preface to the Thematic Issue on Mineral Systems of West Africa. Mineralium Deposita, 57, 509-511. https://doi.org/10.1007/s00126-022-01100-8
[23]
Ilboudo, H., Wenmenga, U. and Sawadogo, S. (2017) Mise en évidence d’un assemblage à disthène—staurotide—grenat dans le secteur de Mangodara, ceinture de Banfora, Burkina Faso, Afrique de l’Ouest: Implication dans la genèse des gites minéraux polymétalliques. Afrique Science, 13, 220-223.
[24]
Fontaine, A., Eglinger, A., Ada, K., André-Mayer A.S., Reisberg, L., Siebenaller, L., Le Mignot, E., Ganne, J. and Poujol, M. (2017) Geology of the World-Class Kiaka Polyphase Gold Deposit, West African Craton, Burkina Faso. Journal of African Earth Sciences, 126, 96-122. https://doi.org/10.1016/j.jafrearsci.2016.11.017
[25]
Ouattara, A.S., Coulibaly, Y. and Kouadio, F.J.L.H. (2017) Les altérations hydrothermales associées à la minéralisation aurifère du gisement de Dougbafla (district d’Oumé-Hiré, centre-ouest de la Cote d’Ivoire). European Scientific Journal, 13, 108-125. https://doi.org/10.19044/esj.2017.v13n30p108
[26]
Le Mignot, E., Siebenaller, L., Béziat, D., André-Mayer, A.S., Laurie Reisberg, L., Salvi, S., Velasquez, G., Zimmermann, C., Naré, A. and Franceschi, G. (2017) The Paleoproterozoic Copper-Gold Deposits of the Gaoua District, Burkina Faso: Superposition of Orogenic Gold on a Porphyry Copper Occurrence? Economic Geology, 112, 99-122. https://doi.org/10.2113/econgeo.112.1.99
[27]
Allou, G., Lionel, B.K.T.D., Inza, C. Eric, B.I. and Yacouba, C. (2022) Etude Metallogenique du Prospect Aurifere de Woulo-Woulo (Zone d’Afema, Sud-est de la Cote d’Ivore). European Scientific Journal, 18, 121.
https://doi.org/10.19044/esj.2022.v18n33p121
[28]
Kouamelan, A.N. (1996) Géochronologie et Géochimie des Formations Archéennes et Protérozoiques de la Dorsale de Man en Cote d’Ivoire. Implications pour la Transition Archéen-protérozoique. Master’s Thesis, Université de Rennes I. France, Rennes.
[29]
Caby, R., Delor, C. and Agoh, O. (2000) Lithologie, Structure et métamorphisme des formations birimiennes dans la région d’Odienné (Cote d’Ivoire): Role majeur du diapirisme des plutons et des décrochements en bordure du craton de Man. Journal of African Earth Sciences, 30, 351-374.
https://doi.org/10.1016/S0899-5362(00)00024-5
[30]
Castaing, C., Billa, M., Milési, J.P., Thiéblemont, D., Le Métour, J., Egal, E., Donzeau, M., Guerrot, C., Cocherie, A., Chèvremont, P., Tegyey, M., Itard, Y., Zida, B., Ouedraogo, I., Kote, S., Kabore, B.E., Ouedraogo, C., Ki, J.C. and Zunino, C. (2003) Notice explicative de la carte géologique et minière du Burkina Faso à 1/1 000 000. Bureau de Recherches Géologiques et Miniéres (BRGM).
[31]
Rollinson, H. (2016) Archaean Crustal Evolution in West Africa: A New Synthesis of the Archaean Geology in Sierra Leone, Liberia, Guinea and Ivory Coast. Precambrian Research, 281, 1-12. https://doi.org/10.1016/j.precamres.2016.05.005
[32]
Block, S., Baratoux, L., Zeh, A., Laurent, O., Bruguier, O., Jessell, M. and Bosch, D. (2016) Paleoproterozoic Juvenile Crust Formation and Stabilisation in the South-Eastern West African Craton (Ghana); New Insights from U-Pb-Hf Zircon Data and Geochemistry. Precambrian Research, 287, 1-30.
https://doi.org/10.1016/j.precamres.2016.10.011
[33]
Lompo, M. (2009) Geodynamic Evolution of the 2.25-2.0 Ga Palaeoproterozoic Magmatic Rocks in the Man-Leo Shield of the West African Craton. A Model of Subsidence of an Oceanic Plateau. Geological Society of London, 323, 231-254.
https://doi.org/10.1144/SP323.11
[34]
Lompo, M. (2010) Paleoproterozoic Structural Evolution of the Man-Leo Shield (West Africa). Key Structures for Vertical to Transcurrent Tectonics. Journal of African Earth Sciences, 58, 19-36. https://doi.org/10.1016/j.jafrearsci.2010.01.005
[35]
Vidal, M., Gumiaux, C., Cagnard, F., Pouclet, A., Ouattara, G. and Pichon, M. (2009) Evolution of a Paleoproterozoic “Weak Type” Orogeny in the West African Craton (Ivory Coast). Tectonophysics, 477, 145-149.
https://doi.org/10.1016/j.tecto.2009.02.010
[36]
Baratoux, L., Metelka, V., Naba, S., Jessell, M.W., Grégoire, M. and Ganne, J. (2011) Juvenile Paleoproterozoic Crust Evolution during the Eburnean orogeny (2.2-2.0Ga), Western Burkina Faso. Precambrian Research, 191, 18-45.
https://doi.org/10.1016/j.precamres.2011.08.010
[37]
Ganne, J., Gerbault, M. and Block, S. (2014) Thermo-Mechanical Modeling of Lower Crust Exhumation—Constraints from the Metamorphic Record of the Palaeoproterozoic Eburnean Orogeny, West African Craton. Precambrian Research, 243, 88-109. https://doi.org/10.1016/j.precamres.2013.12.016
[38]
Parra-Avila, L.A., Baratoux, L., Eglinger, A., Fiorentini, M.L. and Block, S. (2019) The Eburnean Magmatic Evolution across the Baoulé-Mossi Domain: Geodynamic Implications for the West African Craton. Precambrian Research, 332, Article ID: 105392. https://doi.org/10.1016/j.precamres.2019.105392
[39]
Grenholm, M., Jessell, M. and Thebaud, N. (2019) Paleoproterozoic Volcano-Sedimentary Series in the ca. 2.27-1.96 Ga Birimian Orogen of the Southeastern West African Craton. Precambrian Research, 328, 161-192.
https://doi.org/10.1016/j.precamres.2019.04.005
[40]
Bonzi, W.M.E., Lichtervelde, M.V., Vanderhaeghe, O., André-Mayer, A.S., Salvi, S. and Wenmenga, U. (2022) Insights from Mineral Trace Chemistry on the Origin of NYF and Mixed LCT + NYF Pegmatites and Their Mineralization at Mangodara, SW Burkina Faso. Mineralium Deposita, 58, 75-104.
https://doi.org/10.1007/s00126-022-01127-x
[41]
Bonzi, W.M.E., Vanderhaeghe, O., Lichtervelde, M.V., Wenmenga, U., André-Mayer, A.S., Salvi, S. and Poujol, M. (2021) Petrogenetic Links between Rare Metal-Bearing Pegmatites and TTG Gneisses in the West African Craton: The Mangodara District of SW Burkina Faso. Precambrian Research, 364, Article ID: 106359. https://doi.org/10.1016/j.precamres.2021.106359
[42]
Milési, J.P., Feybesse, J.L., Ledru, P., Dommanget, A., Ouédraogo, M.F., Marcoux, E., Prost, A.E., Vinchon, C., Sylvain, J.P., Johan, V., Teguey, M., Calvez, J.Y. and Lagny, P. (1989) Les minéralisations aurifères d’Afrique de l’Ouest. Leurs relations avec l’évolution lithostructurale au Protérozoique inférieur. Chroniques Recherche Minière France, 497, 3-98.
[43]
Ilboudo, H., Sawadogo, S., Zongo, G.H., Naba, S., Wenmenga, U. and Lompo, M. (2020) Geochemistry and Geodynamic Constraint of Volcanic and Plutonic Magmatism within the Banfora Belt (Burkina-Faso, West-Africa): Contribution to Mineral Exploration. Geological Society of London, 502, 283-307.
https://doi.org/10.1144/SP502-2019-86
[44]
Ouattara, G. (1998) Structure du Batholite de Ferkessédougou (Secteur de Zuenoula, Cote d’Ivoire). Master’s Thesis, Université d’Orléans, Orléans.
[45]
Kretz, R. (1983) Symbols for Rock-Forming Minerals. American Mineralogist, 68, 277-279.
[46]
Janousek, V., Farrow, C.M. and Erban, V. (2006) Interpretation of Whole-Rock Geochemical Data in Igneous Geochemistry: Introducing Geochemical Data Toolkit (GCDkit). Journal of Petrology, 47, 1255-1259.
https://doi.org/10.1093/petrology/egl013
[47]
Aitchison, J. (1986) The Statistical Analysis of Compositional Data. Chapman and Hall, London.
[48]
Kaiser, H.F. (1960) The Application of Electronic Computers to Factor Analysis. Educational and Psychological Measurement, 20, 141-151.
https://doi.org/10.1177/001316446002000116
[49]
Pearce, J.A. (1996) Sources and Settings of Granitic Rocks. Episodes, 19, 120-125.
https://doi.org/10.18814/epiiugs/1996/v19i4/005
[50]
Bonnet, A.L. and Corriveau, L. (2007) Alteration Vectors to Metamorphosed Hydrothermal Systems in Gneissic Terranes. In: Goodfellow, W.D., Ed., Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Geological Association of Canada, Newfoundland, 1035-1049.
[51]
Corriveau, L. and Spry, P.G. (2014) Metamorphosed Hydrothermal Ore Deposits. In: Scott, S.D., Ed., Treatise on Geochemistry (2nd Edition), Elsevier, Amsterdam, 175-194. https://doi.org/10.1016/B978-0-08-095975-7.01107-4
[52]
Pearce, J.A. and Norry, M.J. (1979) Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69, 33-47. https://doi.org/10.1007/BF00375192
[53]
MacLean, W.H. and Kranidiotis, P. (1987) Immobile Elements as Monitors of Mass Transfer in Hydrothermal Alteration; Phelps Dodge Massive Sulfide Deposit, Matagami, Quebec. Economie Geology, 82, 951-962.
https://doi.org/10.2113/gsecongeo.82.4.951
[54]
Trépanier, S., Mathieu, L., Daigneault, R. and Faure, S. (2016) Precursors Predicted by Artificial Neural Networks for Mass Balance Calculations: Quantifying Hydrothermal Alteration in Volcanic Rocks. Computers and Geosciences, 89, 32-43. https://doi.org/10.1016/j.cageo.2016.01.003
[55]
Reimann, C., Filzmoser, P. and Garrett, R.G. (2005) Background and Threshold: Critical Comparison of Methods of Determination. Science of the Total Environment, 346, 1-16. https://doi.org/10.1016/j.scitotenv.2004.11.023
[56]
Gaillard, N., Williams-Jones, E.A., Clark, J.R., Lypaczewski, P., Salvi, S., Perrouty, S., Piette-Lauzière, N., Guilmette, C. and Linnen, R.L. (2018) Mica Composition as a Vector to Gold Mineralization: Deciphering Hydrothermal and Metamorphic Effects in the Malartic District, Quebec. Ore Geology Reviews, 95, 789-820.
https://doi.org/10.1016/j.oregeorev.2018.02.009
[57]
Hokka, J. (2020) Geology, Alteration and Lithogeochemistry of the Paleoproterozoic Korpela VMS Occurrence in Eastern Finland. Mineralium Deposita, 55, 1581-1604. https://doi.org/10.1007/s00126-020-00954-0
[58]
Xu, K., Xu, D., Deng, T., Li, Z., Zou, S., Wang, Z., Hai, Y., Zhang, S., Qian, Q. and Guo, S. (2022) Genesis of Altered Slate Type Ores in the Huangjindong Gold Deposit, Jiangnan Orogenic Belt, South China. Journal of Geochemical Exploration, 241, Article ID: 107047. https://doi.org/10.1016/j.gexplo.2022.107047
[59]
Couture, J.F. and Guha, J. (1990) Relative Timing of Emplacement of an Archean Lode-Gold Deposit in an Amphibolite Terrane: The Eastmain River Deposit, Northern Quebec. Canadian Journal of Earth Sciences, 27, 1621-1636.
https://doi.org/10.1139/e90-172
[60]
Dubé, B., Mercier-Langevin, P., Kjarsgaard, I., Hannington, M., Bécu, V., Coté, J., Moorhead, J., Legault, M. and Bédard, N. (2014) The Bousquet 2-Dumagami World-Class Archean Au-Rich Volcanogenic Massive Sulfide Deposit, Abitibi, Quebec: Metamorphosed Submarine Advanced Argillic Alteration Footprint and Genesis. Economic Geology, 109, 121-166.
https://doi.org/10.2113/econgeo.109.1.121
[61]
Detraz, G. and Loubat, H. (1984) Faciès à disthène, staurotide et grenat dans un micaschiste appartenant à l’unité des gneiss du Sapey (Vanoise, Alpes francaises). Géologie Alpine, 60, 5-12.
[62]
Ibarguchi, J.I.G., Mendia, M. and Girardeau, J. (1991) Mg- and Cr-Rich Staurolite and Cr-Rich Kyanite in High-Pressure. American Mineralogist, 76, 501-511.
[63]
Azambre, B. and Guitard, G. (2001) Disthène et staurotide reliques dans les métapelites du Canigou (Pyrénées orientales). Relations avec les épisodes hercyniens de basses et moyennes pressions. Earth and Planetary Sciences, 333, 601-609.
https://doi.org/10.1016/S1251-8050(01)01670-6
[64]
Mathieu, L. (2018) Quantifying Hydrothermal Alteration: A Review of Methods. Geosciences, 8, Article 245. https://doi.org/10.3390/geosciences8070245
[65]
Phillips, S.E., Argles, W.T., Warren, J.C., Harris, W.N.B. and Kunz, B.E. (2023) Kyanite Petrogenesis in Migmatites: Resolving Melting and Metamorphic Signatures. Contributions to Mineralogy and Petrology, 178, Article No. 10.
https://doi.org/10.1007/s00410-022-01991-w
[66]
MacLean, W.H. and Barrett, T.J. (1993) Lithogeochemical Techniques Using Immobile Elements. Journal of Geochemical Exploration, 48, 109-133.
https://doi.org/10.1016/0375-6742(93)90002-4
[67]
Bierlein, F.P., Arne, D.C., McKnight, S. and Lu, J. (2000) Wall-Rock Petrology and Geochemistry in Alteration Halos Associated with Mesothermal Gold Mineralization, Central Victoria, Australia. Economie Geology, 95, 283-312.
https://doi.org/10.2113/gsecongeo.95.2.283
[68]
Large, R.R., Gemmell, J.B., Paulick, H. and Huston, D.L. (2001) The Alteration Box Plot: A Simple Approach to Understanding the Relationship between Alteration Mineralogy and Lithogeochemistry Associated with Volcanic-Hosted Massive Sulfide Deposits. Economie Geology, 96, 957-971.
https://doi.org/10.2113/gsecongeo.96.5.957
[69]
Cail, T.L. and Cline, J.S. (2001) Alteration Associated with Gold Deposition at the Getchell Cartin-Type Gold Deposit, North-Central Nevada. Economie Geology, 96, 1343-1359. https://doi.org/10.2113/gsecongeo.96.6.1343