|
我国地区分布式能源驱动因素的空间分位数面板模型研究
|
Abstract:
大力推广分布式能源能够有效促进我国能源结构转型,推动经济发展绿色化、低碳化。基于2005~2019年的省级面板数据,本文采用空间分位数面板模型实证分析了我国地区分布式能源处于不同发展水平下,各影响因素对分布式能源发展的驱动效应。研究结果表明:1) 我国地区分布式能源存在显著的正向空间关联性。2) 我国各地区分布式能源处于不同发展水平时其影响因素的效应不尽相同。基础设施投资和城镇化在分布式能源各分位点下都有着显著的促进作用;分布式能源发展水平较低的省份,技术进步具有显著的正向影响,而对外石油依存和能源消费结构则表现为负向影响;分布式能源发展水平较高的省份,化石燃料价格上涨对分布式能源的推广具有正向影响。据此,本文提出了相应的政策建议。
The development of distributed energy can effectively promote the transformation of China’s energy structure, and promote the greening and decarbonization of economic development. Based on provincial panel data from 2005~2019, this paper empirically analyzes the driving effect of each influencing factor on the development of distributed energy in China’s regions where distributed energy is at different levels of development using a spatial quantile panel model. The results of the study show that 1) There is a significant positive spatial correlation of regional distributed energy in China. 2) The effects of the influencing factors are not the same when distributed energy is at different levels of development in each region of China. Infrastructure investment and urbanization have significant promotion effects under each quartile of distributed energy; in provinces with a lower level of distributed energy development, technological progress has a significant positive effect, while foreign oil dependence and energy consumption structure show a negative effect; in provinces with a higher level of distributed energy development, the rise in fossil fuel prices has a positive effect on the promotion of distributed energy. Accordingly, this paper puts forward corresponding policy recommendations.
[1] | 林伯强. 碳中和进程中的中国经济高质量增长[J]. 经济研究, 2022, 57(1): 56-71. |
[2] | Wang, D., Luo, H., Grunder, O., et al. (2017) Multi-Step Ahead Wind Speed Forecasting Using an Improved Wavelet Neural Network Combining Variational Mode Decomposition and Phase Space Reconstruction. Renewable and Sustainable Energy Reviews, 113, 1345-1358. https://doi.org/10.1016/j.renene.2017.06.095 |
[3] | Dong, F. and Pan, Y. (2020) Evolution of Renewable Energy in BRI Countries: A Combined Econometric and Decomposition Approach. International Journal of Environmental Research and Public Health, 17, Article No. 8668.
https://doi.org/10.3390/ijerph17228668 |
[4] | 董福贵, 张也, 尚美美. 分布式能源系统多指标综合评价研究[J]. 中国电机工程报, 2016, 36(12): 3214-3223. |
[5] | Di Somma, M., Graditi, G., Heydarian-Forushani, E., et al. (2018) Stochastic Optimal Scheduling of Distributed Energy Resources with Renewables Considering Economic and Environmental Aspects. Renewable Energy, 116, 272-287.
https://doi.org/10.1016/j.renene.2017.09.074 |
[6] | Bohlayer, M. and Zottl, G. (2018) Low-Grade Waste Heat Integration in Distributed Energy Generation Systems—An Economic Optimization Approach. Energy, 159, 327-343. https://doi.org/10.1016/j.energy.2018.06.095 |
[7] | Wang, X., Jin, M., Feng, W., et al. (2018) Cascade Energy Optimization for Waste Heat Recovery in Distributed Energy Systems. Applied Energy, 230, 679-695. https://doi.org/10.1016/j.apenergy.2018.08.124 |
[8] | 付丽苹, 刘爱东. 我国清洁能源发展驱动因素及测度研究[J]. 科技进步与对策, 2012, 29(18): 132-136. |
[9] | Aneja, R., Banday, U.J., Hasnat, T., et al. (2017) Renewable and Non-Renewable Energy Consumption and Economic Growth: Empirical Evidence from Panel Error Correction Model. Jindal Journal of Business Research, 6, 76-85.
https://doi.org/10.1177/2278682117713577 |
[10] | Xu, B., Luo, Y. and Xu, R. (2021) Exploring the Driving Forces of Distributed Energy Resources in China: Using a Semiparametric Regression Model. Energy, 236, Article ID: 121452. https://doi.org/10.1016/j.energy.2021.121452 |
[11] | Chernozhukov, V. and Hansen, C. (2006) Instrumental Quantile Regression Inference for Structural and Treatment Effects Models. Journal of Econometrics, 132, 491-525. https://doi.org/10.1016/j.jeconom.2005.02.009 |
[12] | Koenker, R. (2004) Quantile Regression for Longitudinal Data. Journal of Multivariate Analysis, 91, 74-89.
https://doi.org/10.1016/j.jmva.2004.05.006 |
[13] | Zietz, J., Zietz, E.N. and Sirmans, G.S. (2008) Determinants of House Prices: A Quantile Regression Approach. The Journal of Real Estate Finance and Economics, 37, 317-333. https://doi.org/10.1007/s11146-007-9053-7 |
[14] | Xu, B. and Lin, B. (2022) Exploring the Spatial Distribution of Distributed Energy in China. Energy Economics, 107, Article ID: 105828. https://doi.org/10.1016/j.eneco.2022.105828 |
[15] | 陶长琪, 彭永樟, 琚泽霞. 经济增长、产业结构与碳排放关系的实证分析——基于PVAR模型[J]. 经济经纬, 2015(4): 126-131. |