全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Construction and Weight Distributions of Binary Linear Codes Based on Deep Holes

DOI: 10.4236/am.2023.1410040, PP. 684-695

Keywords: Linear Codes, MacWilliams Equations, Weight Distribution, Dual Codes, Deep Holes, Covering Radius

Full-Text   Cite this paper   Add to My Lib

Abstract:

Deep holes are very important in the decoding of generalized RS codes, and deep holes of RS codes have been widely studied, but there are few works on constructing general linear codes based on deep holes. Therefore, we consider constructing binary linear codes by combining deep holes with binary BCH codes. In this article, we consider the 2-error-correcting binary primitive BCH codes and the extended codes to construct new binary linear codes by combining them with deep holes, respectively. Furthermore, three classes of binary linear codes are constructed, and then we determine the parameters and the weight distributions of these new binary linear codes.

References

[1]  Wu, R.J. and Hong, S.F. (2012) On Deep Holes of Standard Reed-Solomon Codes. Science China Mathematics, 55, 2447-2455.
https://doi.org/10.1007/s11425-012-4499-3
[2]  Zhang, J., Fu, F.W. and Liao, Q.Y. (2013) Deep Holes of Generalized Reed-Solomon Codes. Scientia Sinica Mathematica, 43, 727-740. (In Chinese)
https://doi.org/10.1360/012012-30
[3]  Zhang, J., Wan, D.Q. and Kaipa, K. (2019) Deep Holes of Projective Reed-Solomon Codes. IEEE Transactions on Information Theory, 66, 2392-2401.
https://doi.org/10.1109/TIT.2019.2940962
[4]  Zhang, J. and Wan, D.Q. (2023) On Deep Holes of Elliptic Curve Codes. IEEE Transactions on Information Theory, 69, 4498-4506.
https://doi.org/10.1109/TIT.2023.3257320
[5]  Hocquenghem, A. (1959) Codes correcteurs d’rreurs. Chiffres (Paris), 2, 147-156.
[6]  Bose, R.C. and Ray-Chaudhuri, D.K. (1960) On a Class of Error Correcting Binary Group Codes. Information and Control, 3, 68-79.
https://doi.org/10.1016/S0019-9958(60)90287-4
[7]  Gorenstein, D. and Zierler, N. (1961) A Class of Error-Correcting Codes in pm Symbols. Journal of the Society for Industrial and Applied Mathematics, 9, 207-214.
https://doi.org/10.1137/0109020
[8]  Gorenstein, D., Peterson, W.W. and Zierler, N. (1960) Two-Error Correcting Bose-Chaudhuri Codes Are Quasi-Perfect. Information and Control, 3, 291-294.
https://doi.org/10.1016/S0019-9958(60)90877-9
[9]  Huffman, W.C. and Pless, V. (2003) Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511807077
[10]  MacWilliams, F.J. and Sloane, N.J.A. (1977) The Theory of Error-Correcting Codes (I and II). North-Holland Publishing Company, Amsterdam.
[11]  Berlekamp, E.R. (1968) Algebraic Coding Theory. McGraw-Hill, New York.
[12]  Assmus, E. and Mattson, H. (1978) The Weight-Distribution of a Coset of a Linear Code (Corresp.). IEEE Transactions on Information Theory, 24, 497-497.
https://doi.org/10.1109/TIT.1978.1055903
[13]  Charpin, P. (1994) Weight Distributions of Cosets of Two-Error-Correcting Binary BCH Codes, Extended or Not. IEEE Transactions on Information Theory, 40, 1425-1442.
https://doi.org/10.1109/18.333859

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133