|
考虑碳捕集的多氢源区域能源系统低碳模型研究
|
Abstract:
为了解决现有模型分析区域能源系统氢能发展存在氢源单一导致碳排放定量分析困难的问题,本文在一个多部门的能源系统技术仿真模型(EnergyPLAN)基础上,增加考虑煤制氢耦合碳捕集技术,兼顾电解水制氢以及氢的储能特性,提出了一种适用于省级能源系统的多氢源耦合碳捕集技术低碳模型。以一个省级能源系统为例,通过预设的政策情景、净零情景和氢能联盟情景等三种潜在的氢能发展情景,分析了该省2021至2030年不同氢能渗透率下能源系统的碳排放、稳定性、结构以及成本。结果初步表明,所提含煤制氢耦合碳捕集技术的区域能源系统模型能够有效模拟该省各氢能情景下能源系统低碳发展路径,氢能发展能够提升能源系统的稳定性、改善能源系统结构和减少碳排放。
In order to solve the problem that the existing model analysis of regional energy system hydrogen energy development has a single hydrogen source, which leads to the difficulty in quantitative analysis of carbon emissions, on the basis of a multi-sector energy system technology simulation model (EnergyPLAN), this paper adds the consideration of coal hydrogen production coupled car-bon capture technology, taking into account the water electrolysis hydrogen production and hy-drogen energy storage characteristics, and proposes a low-carbon model of multi hydrogen source coupled carbon capture technology suitable for provincial energy systems. Taking a provincial en-ergy system as an example, the carbon emissions, stability, structure and cost of the energy system under different hydrogen penetration rates from 2021 to 2030 in the province are analyzed through three potential hydrogen development scenarios, including the preset policy scenario, the net zero scenario and the hydrogen alliance scenario. The preliminary results indicate that the proposed regional energy system model using coal-based hydrogen production coupled carbon capture technology can effectively simulate the low-carbon development path of the energy system in various hydrogen energy scenarios in the province. Hydrogen energy development can enhance the stability of the energy system, improve the structure of the energy system, and reduce carbon emissions.
[1] | 李政, 陈思源, 董文娟, 等. 碳约束条件下电力行业低碳转型路径研究[J]. 中国电机工程学报, 2021, 41(12): 3987-4001. |
[2] | 张尧翔, 刘文颖, 庞清仑, 等. 计及综合需求响应参与消纳受阻新能源的多时间尺度优化调度策略[J]. 电力建设, 2023, 44(1): 1-11. |
[3] | 曹军文, 郑云, 张文强, 等. 能源互联网推动下的氢能发展[J]. 清华大学学报(自然科学版), 2021, 61(4): 302-311. |
[4] | 吕振华, 李强, 韩华春, 等. 区域综合能源系统双层多目标模糊优化模型预测控制方法[J]. 电力建设, 2020, 41(12): 121-130. |
[5] | 曹韵, 韩松, 荣娜, 等. 基于GCTMSA的梯级水火风光蓄储联合调度[J]. 电力系统保护与控制, 2023, 51(3): 108-116. |
[6] | Field, R.A. and Derwent, R.G. (2021) Global Warming Consequences of Replacing Natural Gas with Hydrogen in the Domestic Energy Sectors of Future Low-Carbon Economies in the United Kingdom and the United States of America. Interna-tional Journal of Hydrogen Energy, 46, 30190-30203. https://doi.org/10.1016/j.ijhydene.2021.06.120 |
[7] | Kl?ckner, K. and Letmathe, P. (2020) Is the Coherence of Coal Phase-Out and Electrolytic Hydrogen Production the Golden Path to Effective Decarbon-ization? Applied Energy, 279, Article ID: 115779.
https://doi.org/10.1016/j.apenergy.2020.115779 |
[8] | Nam, H., Nam, H. and Lee, D. (2021) Potential of Hydrogen Replacement in Natural-Gas-Powered Fuel Cells in Busan, South Korea Based on the 2050 Clean Energy Master Plan of Busan Metropolitan City. Energy, 221, Article ID: 119783. https://doi.org/10.1016/j.energy.2021.119783 |
[9] | Song, Q., Rong, N., Han, S., et al. (2022) Decarbonization Pathways of China’s Provincial Energy Systems under Carbon Constraints: A Case Study of Guizhou Province. En-ergy Reports, 8, 9363-9378.
https://doi.org/10.1016/j.egyr.2022.07.045 |
[10] | 任洲洋, 王皓, 李文沅, 等. 基于氢能设备多状态模型的电氢区域综合能源系统可靠性评估[J/OL]. 电工技术学报, 2023: 1-16. https://doi.org/10.19595/j.cnki.1000-6753.tces.221459 |
[11] | 王文烨, 姜飞, 张新鹤, 等. 含规模氢能综合利用的高比例风光多能源系统低碳灵活调度[J/OL]. 电网技术, 2023: 1-15. https://doi.org/10.13335/j.1000-3673.pst.2022.2511 |
[12] | 李颢然, 薛屹洵, 戴铁潮, 等. 考虑氢负荷响应的化工园区电-氢耦合系统协同优化调度[J]. 工程科学与技术, 2023, 55(1): 93-100. |
[13] | Li, J.Q., Wei, Y.M., Liu, L.C., et al. (2022) The Carbon Footprint and Cost of Coal-Based Hydrogen Production with and without Carbon Capture and Storage Technology in China. Journal of Cleaner Production, 362, Article ID: 132514. https://doi.org/10.1016/j.jclepro.2022.132514 |
[14] | Fan, J.L., Yu, P.W., Li, K., et al. (2022) A Levelized Cost of hydrogen (LCOH) Comparison of Coal-to-Hydrogen with CCS and Water Electrolysis Powered by Renewable Energy in China. Energy, 242, Article ID: 123003.
https://doi.org/10.1016/j.energy.2021.123003 |
[15] | Lund, H., Thellufsen, J.Z., ?stergaard, P.A., et al. (2021) Ener-gyPLAN—Advanced Analysis of Smart Energy Systems. Smart Energy, 1, Article ID: 100007. https://doi.org/10.1016/j.segy.2021.100007 |
[16] | 吕泉, 张佳伟, 张娜, 等. 含多元灵活性资源的省级电-热综合能源系统耦合平衡分析模型[J]. 电力系统自动化, 2022, 46(16): 95-102. |
[17] | Luo, S.H., Hu, W.H., Liu, W., et al. (2021) Transition Pathways towards a Deep Decarbonization Energy System—A Case Study in Sichuan, China. Applied Energy, 302, Article ID: 117507.
https://doi.org/10.1016/j.apenergy.2021.117507 |
[18] | 谢欣烁, 杨卫娟, 施伟, 等. 制氢技术的生命周期评价研究进展[J]. 化工进展, 2018, 37(6): 2147-2158. |
[19] | 耿卅捷, 潘禾吉田, 杨欢, 等. 燃气轮机天然气掺氢燃烧及排放特性数值模拟研究[J]. 西安交通大学学报, 2022, 56(12): 1-11. |
[20] | 科技部社会发展科技司, 中国21世纪议程管理中心. 中国碳捕集利用与封存技术发展路线图[M]. 北京: 科学出版社, 2019: 7-14. |
[21] | 张彩丽. 煤制氢与天然气制氢成本分析及发展建议[J]. 石油炼制与化工, 2018, 49(1): 94-98. |
[22] | 中华人民共和国国家发展和改革委员会. 省级温室气体清单编制指南(试行) [R]. 北京: 中华人民共和国国家发展和改革委员会, 2020: 24-25. |
[23] | International Energy Agency (2021) Global Hydrogen Review 2021. |
[24] | 中华人民共和国国家统计局. 中国能源统计年鉴2021[R]. 北京: 中华人民共和国国家统计局, 2022. |