|
随机环境中两性分枝过程的偏差不等式
|
Abstract:
考虑到自然界中种群繁衍法则,引入雌雄配对机制,从而将随机环境中分枝过程推广到随机环境中两性分枝过程。令为独立同分布环境
中的一个上临界两性分枝过程,本文给出
在Bernstein条件下的一个偏差不等式。
We consider the law of population reproduction in nature and introduce the male-female pairing mechanism, so as to generalize the branching process in a random environment (BPRE) to the bi-sexual branching process in a random environment (BBPRE). Set is a supercritical bi-sexual branching process in a independent and identically distributed (i.i.d.) random environment
, and we will give a deviation inequalitie for
under Bernstein condition.
[1] | Daley, D.J. (1968) Extinction Conditions for Certain Bisexual Galton-Watson Branching Processes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 9, 315-322. https://doi.org/10.1007/BF00531755 |
[2] | Daley, D.J., Hull, D.M. and Taylor, J.M. (1986) Bisexual Galton-Watson Branching Processes with Superadditive Mating Functions. Journal of Applied Probability, 23, 585-600. https://doi.org/10.2307/3213999 |
[3] | González, M. and Molina, M. (1997) Some Theoretical Results on the Progeny of a Bisexual Galton-Watson Branching Process. Serdica Mathematical Journal, 23, 15-24. |
[4] | González, M. and Molina, M. (1997) On the Partial and Total Progeny of a Bi-sexual Galton-Watson Branching Process. Applied Stochastic Models and Data Analysis, 13, 225-232.
https://doi.org/10.1002/(SICI)1099-0747(199709/12)13:3/4<225::AID-ASM316>3.0.CO;2-9 |
[5] | González, M. and Molina, M. (1996) On the Limit Behaviour of a Superadditive Bisexual Galton-Watson Branching Process. Journal of Applied Probability, 33, 960-967. https://doi.org/10.2307/3214977 |
[6] | González, M. and Molina, M. (1998) A Note on the L1-Convergence of a Superadditive Bisexual Galton-Watson Process. Extracta Mathematicae, 13, 69-72. |
[7] | González, M. and Molina, M. (1997) On the L2-Convergence of a Superadditive Bisexual Galton-Watson Branching Process. Journal of Applied Probability, 34, 575-582. https://doi.org/10.2307/3215085 |
[8] | Ma, S. (2006) Bisexual Galton-Watson Branching Processes in Random Environments. Acta Mathematicae Applicatae Sinica, 22, 419-428. https://doi.org/10.1007/s10255-006-0317-4 |
[9] | 马世霞. 随机环境中的两性Galton-Watson分枝过程[J]. 河北工业大学学报, 2008, 37(1): 68-72. |
[10] | 李应求, 胡杨利, 张影. 随机环境中两性分枝过程的马氏性与灭绝[J]. 应用数学学报, 2010, 33(3): 490-499. |
[11] | 李应求, 肖胜, 彭朝晖. 随机环境中两性分枝过程的矩收敛准则[J]. 应用数学学报, 2020, 43(4): 639-653. |
[12] | 李应求, 胡杨利, 张影. 随机环境中两性分枝过程的极限性质[J]. 中国科学(数学), 2015(5): 611-622. |
[13] | de la Pena, V.H. (1997) A General Class of Exponential Inequalities for Martingales and Ratios. The Annals of Probability, 27, 537-564. https://doi.org/10.1214/aop/1022677271 |