全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

随机环境中两性分枝过程的偏差不等式
Deviation Inequalitie for a Supercritical Bisexual Branching Process in a Random En-vironment

DOI: 10.12677/AAM.2023.1210410, PP. 4177-4182

Keywords: 两性分枝过程,随机环境,Bernstein条件,偏差不等式
Bisexual Branching Processes
, Random Environment, Bernstein Condition, Deviation Inequalitie

Full-Text   Cite this paper   Add to My Lib

Abstract:

考虑到自然界中种群繁衍法则,引入雌雄配对机制,从而将随机环境中分枝过程推广到随机环境中两性分枝过程。令\"\"为独立同分布环境\"\"中的一个上临界两性分枝过程,本文给出\"\"在Bernstein条件下的一个偏差不等式。
We consider the law of population reproduction in nature and introduce the male-female pairing mechanism, so as to generalize the branching process in a random environment (BPRE) to the bi-sexual branching process in a random environment (BBPRE). Set \"\" is a supercritical bi-sexual branching process in a independent and identically distributed (i.i.d.) random environment \"\" , and we will give a deviation inequalitie for \"\" under Bernstein condition.

References

[1]  Daley, D.J. (1968) Extinction Conditions for Certain Bisexual Galton-Watson Branching Processes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 9, 315-322.
https://doi.org/10.1007/BF00531755
[2]  Daley, D.J., Hull, D.M. and Taylor, J.M. (1986) Bisexual Galton-Watson Branching Processes with Superadditive Mating Functions. Journal of Applied Probability, 23, 585-600.
https://doi.org/10.2307/3213999
[3]  González, M. and Molina, M. (1997) Some Theoretical Results on the Progeny of a Bisexual Galton-Watson Branching Process. Serdica Mathematical Journal, 23, 15-24.
[4]  González, M. and Molina, M. (1997) On the Partial and Total Progeny of a Bi-sexual Galton-Watson Branching Process. Applied Stochastic Models and Data Analysis, 13, 225-232.
https://doi.org/10.1002/(SICI)1099-0747(199709/12)13:3/4<225::AID-ASM316>3.0.CO;2-9
[5]  González, M. and Molina, M. (1996) On the Limit Behaviour of a Superadditive Bisexual Galton-Watson Branching Process. Journal of Applied Probability, 33, 960-967.
https://doi.org/10.2307/3214977
[6]  González, M. and Molina, M. (1998) A Note on the L1-Convergence of a Superadditive Bisexual Galton-Watson Process. Extracta Mathematicae, 13, 69-72.
[7]  González, M. and Molina, M. (1997) On the L2-Convergence of a Superadditive Bisexual Galton-Watson Branching Process. Journal of Applied Probability, 34, 575-582.
https://doi.org/10.2307/3215085
[8]  Ma, S. (2006) Bisexual Galton-Watson Branching Processes in Random Environments. Acta Mathematicae Applicatae Sinica, 22, 419-428.
https://doi.org/10.1007/s10255-006-0317-4
[9]  马世霞. 随机环境中的两性Galton-Watson分枝过程[J]. 河北工业大学学报, 2008, 37(1): 68-72.
[10]  李应求, 胡杨利, 张影. 随机环境中两性分枝过程的马氏性与灭绝[J]. 应用数学学报, 2010, 33(3): 490-499.
[11]  李应求, 肖胜, 彭朝晖. 随机环境中两性分枝过程的矩收敛准则[J]. 应用数学学报, 2020, 43(4): 639-653.
[12]  李应求, 胡杨利, 张影. 随机环境中两性分枝过程的极限性质[J]. 中国科学(数学), 2015(5): 611-622.
[13]  de la Pena, V.H. (1997) A General Class of Exponential Inequalities for Martingales and Ratios. The Annals of Probability, 27, 537-564.
https://doi.org/10.1214/aop/1022677271

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133